
Awakening Awareness on Energy Consumption
in Software Engineering

Erik Jagroep, Jordy Broekman, Jan Martijn
E.M. van der Werf, Sjaak Brinkkemper

Utrecht University,
Dept. of Information and Computing Sciences

Princetonplein 5,
3584 CC Utrecht, The Netherlands

Email: {e.a.jagroep, j.broekman,
j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl

Patricia Lago
Vrije Universiteit Amsterdam,

Computer Science Institute
De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands
Email: p.lago@vu.nl

Leen Blom, Rob van Vliet
Centric Netherlands B.V.

P.O. Box 338,
2800 AH Gouda, The Netherlands

Email: {leen.blom,
rob.van.vliet}@centric.eu

Abstract—Software producing organizations have the ability
to address the energy impact of their ICT solutions during the
development process. However, while industry is convinced of the
energy impact of hardware, the role of software has mostly been
acknowledged by researchers in software engineering. Strength-
ened by the limited practical knowledge to reduce the energy
consumption, organizations have less control over the energy
impact of their products and lose the contribution of software
towards energy related strategies. Consequently, industry risks
not being able to meet customer requirements or even fulfill
corporate sustainability goals.

In this paper we perform an exploratory case study on how
to create and maintain awareness on an energy consumption
perspective for software among stakeholders involved with the
development of software products. During the study, we followed
the development process of two commercial software products
and provided direct feedback to the stakeholders on the effects
of their development efforts, specifically concerning energy con-
sumption and performance, using an energy dashboard. Multiple
awareness measurements allowed us to keep track of changes
over time on specific aspects affecting software development.
Our results show that, despite a mixed sentiment towards the
dashboard, changed awareness has triggered discussion on the
energy consumption of software.

Keywords-Energy consumption perspective; Awareness; Soft-
ware energy consumption; Software engineering;

I. INTRODUCTION

Software is acknowledged by academia to be a key driver for
the energy consumption of Information and Communication
Technology (ICT) solutions [1], [2]. Software and energy, i.e.,
the area of green software [2], can be related to the environ-
mental dimension of sustainability, which is generally defined
as ‘the capacity to endure’ [3]. One way to address energy
consumption in software, i.e. Software Energy Consumption
(SEC), is through its software architecture [4]. By applying an
Energy Consumption Perspective (ECP) [5], the SEC can be
addressed in the early stages of software engineering. In this
way, sustainability can be considered as a Quality Attribute [6],
and consequently, it can be included in trade-off analysis and
architecture evaluation [7]. However, a necessary prerequisite
is that the stakeholders involved in the development are aware

of the energy consumed by their software and its causes [8].
Different studies have surfaced investigating means to mea-

sure SEC [9], [10] compare releases of software products on
their energy consuming characteristics [8], [11], and provide
insight to those involved in software development [12]. An-
other study [13] reports limited knowledge of energy efficiency
and lack of knowledge of practices to reduce the SEC among
software developers. Additionally, the study reports uncer-
tainty about how software consumes energy, which seems to
contrast the findings of [14], that practitioners are aware of
energy consumption problems. From these studies, it becomes
clear that a gap remains with respect to concrete coding
guidelines and practices reaching their target audience [15].
In other words, we see that industry is not yet able to adopt
solutions provided by research.

With the growing attention for corporate social responsibil-
ity, Software Producing Organizations (SPOs) [16], such as
independent software vendors and open-source foundations,
risk not being able to fulfill their corporate sustainability goals
and meet (customer) sustainability requirements with their
software [8]. Awareness of their software products’ energy
consumption potentially helps SPOs to mitigate this risk.

In this paper, we present the findings of a multiple-case
study on creating and maintaining awareness of the energy
consumption of software products among stakeholders during
development, as it has the greatest impact [17]. We first
introduce an energy dashboard for the ECP based on earlier
research [18], which provides insight in the energy consump-
tion between consecutive sprints. For two commercial software
product, we then measure how the awareness changed over
several sprints. To measure the development of the awareness
we create a specialized awareness model for SEC, inspired by
the work of [19] and that served as a basis for the surveys
held with the stakeholders after each sprint.

The main contribution of this paper is twofold:
• Awareness model for SEC: The model we apply allows

us to capture the awareness of stakeholders involved with
product development. The scores we obtain allow for
analysis on different constructs, which provide insight



into the areas that require extra attention in relation to
SEC and ECP.

• Development of awareness over sprints: Although the
stakeholders are better aware of the ECP of their software
products, the results show and shortcomings in current
state-of-the-art tactics and best-practices to improve soft-
ware energy efficiency. Furthermore, to maintain aware-
ness, SEC should be supported throughout the whole
organization.

The paper is structured as follows: Section II presents
our research questions followed by a discussion of related
work (Section III) and the design of our empirical study
(Section IV). In Section V we present the results of our study
which are discussed in Section VI, followed by the threats to
validity (Section VII). Concluding remarks and an outline for
future work are provided in Section VIII.

II. RESEARCH QUESTIONS

To address the issue presented above, our study was struc-
tured around the following main research question (RQ):

RQ: How to create and maintain awareness of the energy
consumption perspective in software product development?

Following ‘A Dictionary of Psychology’1 awareness is part
of being ‘conscious’ that is: “giving due weight to something”.
In our context, being aware means weighted decisions can be
made with respect to SEC, without implying an improvement
or deterioration of the SEC. For an SPO, systematically
addressing the SEC in the software design requires that
awareness is maintained among the stakeholders involved with
the software.

As a prerequisite to answer our RQ we need to be able to
determine awareness among stakeholders, which leads to our
first research sub-question:

SQ1: How can we measure awareness on the topic of SEC?

For this sub-question (SQ1) we look into those aspects that
determine awareness and operationalize these in the software
engineering context.

Second, to actually create awareness, we require a means
to stimulate the stakeholders to actively think about SEC that
can be incorporated in the development process. Resulting in
the second and third sub-questions:

SQ2: What stimulus can be used to trigger SEC awareness?

SQ3: How can we incorporate SEC in the development
process?

The second sub-question (SQ2) is set to investigate what
information is required by the stakeholders and in which
form the information should be presented. After determining
what stimulus is required, we answer the final sub-question
(SQ3) by investigating how the stimulus can be included in
the development process, with minimal impact on the process

1http://www.oxfordreference.com/view/10.1093/acref/9780199534067.001.
0001/acref-9780199534067

itself, and enable stakeholders to structurally consider the SEC
of their software products.

III. BACKGROUND

Green Software: Green software generally refers to energy
efficient software. To create green software, the sustainability
aspect should be addressed during the early development
stages of a product and constantly monitored during the
software product lifecycle [17]. For example, applying green
practices [15] and selecting the right ‘Collection types’ [20]
potentially reduce the energy consumption up to respectively
25% and 300%. If we position sustainability as a software
quality property [3], [5] we can go back further in the lifecycle,
i.e. the design phase, where the software architecture allows
for precluding qualitative traits of the software [4]. Similar to
technical debt [21], early awareness of green software could
save a significant amount of costs compared to refactoring the
software at a later stage.

Energy Profiling: A recurring theme with green software is
monitoring the SEC to support engineers with understanding
their code and its energy impact [22]. However, unlike example
the mobile domain [23], monitoring is more difficult with
software products [1], [8] and different approaches exist to
estimate the SEC. Most prominent are power models that
profile the software based on resource usage, e.g. [9], [10], but
new approaches are surfacing using big data principles [24].
A modeling specialist, for example, could help in building
predictive profiling models [25]. In practice, performance is
often used as a proxy for energy efficiency; i.e. less resource
usage equals to less energy consumption. However, energy
consumption and performance are not always positively cor-
related [26]–[28] and should thus be considered separately.

SEC Awareness: A lack of knowledge on SEC [13] does
not imply green software should be neglected altogether.
Knowing the difference in energy consumption between re-
leases, e.g. [8], could help practitioners determine whether
the energy consumption is reasonable given the work being
performed [22]. Being aware of the topic, which fits the ‘ser-
vice awareness’ problem area [29], could affect the believes
of software engineers that are bound to affect their practice
[30]. Following the economic dimension of sustainability [3],
software-oriented data analytics [25] provides actionable in-
sights to achieve business goals using green software practices.

Creating awareness requires a stimulus that triggers stake-
holders to actively make conscious decisions with respect
to SEC. Examples like the ‘Eco’ programming model [31],
Resource Utilization Score (RUS) [18] and a graphical energy
monitoring interface [12] have shown positive effects in this
regard. However, creating awareness does not automatically
imply a reduced energy consumption. A conscious decision
could be to favor a specific quality aspect above sustainability,
e.g. color usage to improve the usability [14]. In this case a
conscious design trade-off is made [5].



Figure 1. Model on transforming environmental behavior with the constructs translated to our study, after Matthies [19].

IV. RESEARCH DESIGN

To answer our main research question we have conducted
an embedded multiple-case study [32] where we measure
SEC awareness and stimulus acceptance (i.e. multiple units of
analysis) with two cases in a company developing commercial
software products. In this section we describe the design of
our study following the guidelines provided in [32]–[36].

A. Energy Consumption and Performance Measurements

To perform energy consumption measurements we applied
a software-based approach using Microsoft Joulemeter (JM),
similar to the approach applied in our earlier research [5],
[8]. After calibration, JM allows us estimate the total energy
consumed by a system at run time based on the computational
resources used with a one second interval between measure-
ments. To determine the SEC we subtract the idle energy
consumption of a system from the energy consumed while
running the software, both obtained using JM. The difference
is in the energy consumed on the account of the software
product, i.e. its SEC.

A prerequisite for valid measurement is to let the hosting
server cool down to a stable state (i.e. a state with no active
processes without direct instructions from the user [8]) after
a reboot. The cooldown time has to be determined for each
individual server used in the study.

In turn, the performance of the hardware components was
measured using Windows Performance Monitor, a standard
tool with the Windows operating system. Developers are in
general more familiar with performance aspects, e.g. CPU uti-
lization, and have experience with addressing the performance
aspects of a system. To provide insight in the resource usage
by the software we calculate a Resource Utilization Score, or
RUS [18] – a score for the software based on the relevant
performance aspects according to the stakeholders.

SEC and Performance Measurements Protocol: To en-
sure the validity of the SEC measurements, a simple protocol
was followed to perform each run:

1) Restart the environment.
2) Close unnecessary applications.
3) Start performance measurements and setup JM.
4) Remain idle for the duration of the cooldown time.
5) Start JM measurements.

6) Start load test and wait for test to finish.
7) Collect and check data.

Starting the performance measurements upfront (step (3)),
allowed us to check whether the system was indeed in a stable
state during a run. If this was not the case (checked in step
(7)), the run was excluded from further analysis.

B. On measuring awareness on SEC

In designing the study to answer SQ1, we found that
‘awareness’ cannot be measured directly due to the inability
to quantify the concept [37]. Hence, as a means of indirect
measurement, we used the model presented by Matthies [19]
meant to transform environmental-detrimental habits into pro-
environmental habits, and specialized it to capture changes in
awareness on SEC. The resulting model (Fig. 1) consists of
four stages (norm activation, motivation, evaluation and action)
and six constructs (C1 through C6) that directly or indirectly
affect the weighting of moral, social and other types of costs
and benefits, potentially resulting in a behavioral change.

Following the definition of awareness provided in Section II,
for stage Evaluation we relabeled the activity of ‘weighting
relevant aspects’ into ‘awareness on SEC’ and defined a survey
to measure it. We used the specialized constructs as basis
for defining the survey questions2. In the Action stage of the
model we determine whether behavior has indeed changed.

As illustrated in Table I, we formulated 14 statements based
on the constructs. To this aim, we carried out brainstorming
sessions with experts in the field of green software engineering
(including the authors) combined with related works like [13],
[38]. While the statements are related to personal experience,
it has been recognized that such personal experience has the
strongest influence on beliefs with respect to specific topics
related to software engineering [30]. (See also Section VII for
a discussion of the related threats to validity.) Each individual
statement can be answered with an option ranging from
strongly disagree (-2), disagree (-1), neutral (0), agree (1) to
strongly agree (2) – where the number behind every option
represents our internal coding scheme.

Next to measuring SEC awareness, the survey also includes
statements for measuring the acceptance of the awareness
stimulus (i.e. the dashboard, see Section IV-C). To this aim,

2The complete survey is available online at http://tinyurl.com/gvpf3hg.

http://tinyurl.com/gvpf3hg


Table I
THE STATEMENTS PER CONSTRUCT USED FOR THE AWARENESS MEASUREMENTS, WITH ITS PARTITIONING INTO SURVEYS A AND B.

C1 (A) 1 I want to determine the energy consumption of our software development environment (e.g. by calculating the energy
consumed by (test)servers, laptops and other resources).

2 Before this project, I wondered multiple times about the energy consumption of our software development environment.

C2 (B) 3 I expect that software has a large influence on the energy usage.
4 I would like to know the energy consumption of our software product.
5 If I had more time to work on the code, I would be able to reduce the energy consumption.

C3 (B) 6 The applied techniques (programming language, design patterns, etc.) to realize the software product, allow for the reduction
of energy consumption.

7 It is possible to make a trade-off between our current non-functional requirements (e.g. performance) and the energy
consumption of our software.

C4 (A) 8 Addressing the energy consumption of our software should gain more attention.
9 I would like to reduce the energy consumption, if I am allowed to spend time on it.

C5 (A)
10 The energy consumption of our software product is discussed during (in)formal meetings.
11 If other teams reduce the energy consumption of their software, I would attempt it too.
12 Reducing the energy consumption would be a benefit to the organization and the customer.

C6 (A) 13 Code optimizations to improve non-functional requirements should be acknowledged and included in our backlog.
14 The benefits of rewriting the code to reduce the energy exceed the costs.

we used as basis constructs inspired by the Unified Theory of
Acceptance and Use of Technology (UTAUT) [39], [40], and
included the relevant associated statements. Both constructs
and associated statements are shown in Fig. 6.

The first version of the survey was reviewed by ten practi-
tioners in our network (software engineers and IT managers)
with varying years of experience. The main feedback was
related to the formulation of the statements. However, several
warnings were also issued with respect to the length of the
survey. As we intended to present the survey to stakeholders
multiple times (see Section IV-D), we have split the survey in
three separate sections:

• Survey A, evaluating the awareness with a generic and
broad scope (C1 and C4-C6).

• Survey B, evaluating the awareness related to a specific
software release (C2 and C3).

• Survey C, focused on the acceptance of the awareness
stimulus (in our case, the dashboard).

Each survey section is presented to the participants only when
relevant, as exemplified in Fig. 3. This allowed us throughout
the study to distribute the effort required to the participants
while collecting all necessary data.

C. The Stimulus to Trigger SEC Awareness

To answer SQ2, we used as input the work done in [18] and
[12], and combined them resulting in an energy dashboard, as
shown in Fig. 2. This includes a radar chart and an overview of
the exact measurements. Data for the dashboard is obtained by
following the provided measurement protocol (Section IV-A).

In particular, the radar chart graphically shows the RUS
[18] and is meant to enhance the communication of the
measurements to stakeholders and highlight key findings. As
adopted in [12], visual information coveys familiar indica-
tors and gauges, e.g. percentages and bar charts, that ‘non-
energy experts’ can easily grasp. Regarding the individual
measurements, the energy dashboard (lower part of Fig. 2)
includes the delta between two releases, which indicates the
change with respect to the usage of a specific resource [18].

Calculating deltas requires labeling one release as benchmark
and positioning the measurements of a different release in light
of this benchmark. In the example of Fig. 2, the results show
a decrease in energy consumption with 2.15% of the new
release (black line) compared to the previous release (blue
line), whereas the color of the surface (green, to yellow to
red) represent the intensity of the decrease (green) or increase
(red) in resource usage. With multiple consecutive releases,
each new release is set as the benchmark for the next, thereby
summarizing the effects of the latter release.

D. On incorporating the Stimulus in Development Process

To answer SQ3, we followed the advice of Devanbu et al.
[30] to take practitioners’ beliefs into account in designing an
experiment. A short investigation with multiple development
teams and the experience of the authors learned that Scrum
was the common development method in the company, and
that software-related dashboards were frequently consulted at
the end of each sprint. At this point in time the team typically
reflects on the past sprint and decides on corrections, e.g.
(re-)prioritize requirements, if required. Accordingly, it was
natural to present our dashboard shortly after each sprint.

Fig. 3 illustrates the holistic organization of our multiple-
case study. The survey and energy dashboard have been
incorporated in the Scrum development process used by the
involved company. At the start, survey A and B are presented
to determine the initial awareness of the stakeholders, followed
by the preparation phase where the first two releases of
a software product (r.1 and r.2) are tested. The preparation
phase ends with the sprint review for release 2 where the
first dashboard (dashboard r.2 - r.1) is presented. The order
of releases with the dashboard indicates that, e.g., release 2
is compared to release 1, and as such release 1 served as the
benchmark for calculating the delta’s.

After the preparation phase, we repeat the following proce-
dure for each consecutive sprint. At the end of a sprint, while
the new release is being tested by the team, the load test
can be performed to collect data for the energy dashboard.
In the accompanying sprint review the stakeholders fill in



Figure 2. The energy dashboard: example as presented to the stakeholders
of case RS.

survey B and C, looking back at the past sprint and dashboard
presented at the previous sprint review. Afterwards the new
dashboard is presented. In the last iteration, survey A, B and
C are presented, followed by the final dashboard. The case
evaluation with the team closes a case and helps to determine
whether behavior has changed (i.e. the Action stage of the
model in Fig. 1).

E. Case Selection

The cases included in our study were acquired by contacting
product managers of multiple software products within the
case company; a large international SPO. While we did not
have specific criteria for the software products themselves, we
did formulate the following inclusion criteria related to the
processes, technology, and team:

• An agile development method is implemented including
reviews after each development iteration.

• At least six releases are available, four of which will be
developed during the case study.

• The software product can be deployed in a production-
like environment.

• Automated load tests are available.
• Commitment to participate for the duration of at least five

sprints including filling in multiple surveys.
With respect to the load test, we are striving for usage
scenarios as these are used most often when practitioners
evaluate energy usage [22]. In the end we identified two cases
that met all inclusion criteria. The details of these cases are
provided below.

Case 1: Document Generator (DG) is a commercial
software product used by over 300 (mostly governmental)
organizations in the Netherlands, counting more than 900
end-users, and generating more than 30 million documents
on an annual basis. Although DG has been used in earlier
research [5], [8], meanwhile the product has moved to a new

development team. This assures us of not having biased results
with respect to awareness. We identified four developers and
one tester as the stakeholders involved with developing DG
and commitment was given for releases 8.0.6, 8.0.7, 8.0.7.1,
8.0.8, 8.0.9 and 9.0.0 being developed during the study. The
duration of a sprint was three weeks, which meant the case
study would last for fifteen weeks.

DG was deployed in a production-like environment en-
compassing an application and database server, both with a
cooldown time of 20 minutes. The load test was designed to
simulate a user generating 258 complex documents. Within the
limited time for testing we were aiming for at least 40 mea-
surements per DG release. Discussing the measurements with
our DG contact learned that, apart from energy consumption,
the CPU utilization, memory usage, hard disk usage, network
usage and execution time were of interest.

Case 2: Retail System (RS) is a commercial software prod-
uct for retail stores, e.g. supermarkets, to process the customer
transactions of their points of sales, e.g. cash registers. With a
customer base of 110 customers in 30 countries, counting more
than 20.000 stores and 75.000 points of sales, RS processes
more than 20 billion transactions on an annual basis. For RS,
the 23 stakeholders participating in our study were located in
Belgium and Romania: 16 developers, 1 database developer, 2
technical analysts, 2 testers, 1 software architect and 1 product
specialist. Commitment was given for releases 3.11, 3.12, 3.13,
3.14, 3.15 and 3.15.1. Each sprint takes three weeks, resulting
in a total case duration of fifteen weeks.

The RS software was deployed on a single server, with a
cooldown time of 15 minutes, which corresponds to the most
simple production-like setting. Despite its simplicity, our load
test was designed to simulate the transactions for up to 100
points of sales, i.e. multiple supermarkets, in a fixed time-
span of three hours. Considering the limited time window, we
aimed to perform at least 10 runs for each RS release. With
respect to the measurements, our RS contact pointed out the
CPU utilization, memory usage, hard disk usage and network
usage should be measured.

F. Data Analysis Procedure

The number of parcticipants per case (n=5 for DG, and
n=22 for RS), led us to follow a qualitative approach to
analyze our data [41] using awareness (survey A and B)
and acceptance (survey C) scores calculated using the survey
results. We calculate scores by adding up individual scores into
a statement score, adding up the statement scores to score a
construct, and finally adding up the construct scores resulting
in a score for awareness and acceptance. Following the coding
scheme of our data, i.e. from -2 to +2, a negative score
indicates disagreement with the statements and vice versa. To
accurately show changes over time, we only include the results
of participants that filled in survey A at the start and end of
the study and missed at most one combination of survey B
and C.



Figure 3. The case study organization including sprints, test periods, sprint reviews, energy dashboard presentations and surveys.

V. RESULTS

In this section we report on the execution and the results of
our multi-case study, for both cases. Detailed figures including
scores per statement, like Fig. 6, are provided online3.

A. Study Execution

With DG we deviated from the case description by exclud-
ing release 9.0.0 from the study. Even with support of the team,
successful deployment was not possible and, consequently,
release 8.0.9 was the final release included in the study. Due
to time constraints and the planning of the DG team we could
not compensate for this exclusion, resulting in a data gap for
sprint review r.5. With the included releases we managed to
perform the required 40 valid runs and collect all survey data
with the exception of survey B (r.3) and survey C (r.2 - r.1) of
two team members due to holidays. Despite the missing data,
following our analysis procedure, the input of all five team
members was included in the score calculations.

With RS, given the geographical distribution, an online
survey tool was used to conduct the surveys, with the following
survey response rates: 96% (SR-r.1), 65% (SR-r.3), 61% (SR-
r.4), 57% (SR-r.5) and 65% (SR-r.6). Following the data
analysis procedure, the RS scores were calculated based on
the survey results of twelve team members. Additionally, we
managed to perform nine runs per release, instead of the
required ten, due to sharing of the test resources and issues
with Performance Monitor. The available resources for load
testing were also used for production testing which simply
had a higher priority. Investigation into Performance Monitor
pointed out data is automatically deleted when a specific
threshold is reached for the available hard disk space. An issue
we solved with a simple reconfiguration. Despite missing one
run we still obtained sufficient data per release to produce
valid energy dashboards.

The evaluation for both cases took place approximately two
weeks after ‘sprint 4’ with representatives of the team.

B. Survey A and B

The final score on awareness for the DG team decreased
from +23 to +3 at the end of the case study. On construct
level the results (Fig. 4) show an increase with respect to con-
sciousness of the energy consumption of software (C1) and the
social norm on developing energy efficient software (C5). On
the other hand the stakeholders indicate that the relevance of

3Scores per statement available at http://tinyurl.com/gvpf3hg.

creating energy efficient software (C2) has decreased together
with the consciousness of one’s possibilities to reduce the SEC
(C3), the personal opinion on reducing the SEC (C4) and the
other motives to reduce the SEC (C6). The scores on C2 and
C3 (collected with survey B), resemble the patterns of the
Gartner Hype Cycle with a change from strongly positive to
strongly negative and back to a more neutral score, i.e. zero.

The awareness scores for RS changed from +4 to -16 during
the case study, and on construct level (Fig. 5) resemble the
trends found with DG. C2 and C3 again show the Gartner
Hype Cycle pattern, C4 and C6 decrease over time with C4
even becoming negative and C5 changed from negative to a
positive score. The only discrepancy is with C1 where RS
stakeholders became more negative.

C. Survey C

With respect to the acceptance of the energy dashboard, in
general the statement scores of the DG stakeholders (Fig. 6)
are increasingly negative over sprint reviews – resulting in a
change of the total score from 14 to -24. The only exception is
with the effort expectancy (EE) construct, where the final score
of +5 (obtained by adding up the EE scores for SR r.6) implies
that the dashboard is considered user friendly. The attitude
towards technology (AT) follows in a second place with a
score moving from +6 to 0. Scores concerning the performance
expectancy (PE), social influence (SI) and behavioral intention
(BI) become increasingly negative, namely -3 to -5, -2 to -13
and +8 to -11 respectively.

For RS (Fig. 7), the total dashboard acceptance score shifts
from -79 to -118 and we again only find a positive final
score (+6) with the EE construct. The other construct scores
imply a consistent negative acceptance of the energy dashboard
resulting in final scores of -26 (AT), -35 (BI), -18 (PE) and
-45 (SI).

VI. DISCUSSION

In this section we discuss the results in light of our research
sub-questions. To this aim, we follow a method similar to
sentiment analysis [42].

A. SQ1: Measuring awareness on SEC

With respect to C1, the sentiment switched from negative
(-2) to positive (+5) with DG (Fig. 4), indicating an increased
willingness to determine the energy consumption in relation
to software, and became more negative (-13 to -18) with RS
(Fig. 5). The case evaluations learned that both teams were

http://tinyurl.com/gvpf3hg


Figure 4. DG case: The awareness scores per construct over sprint reviews.

Figure 5. RS case: The awareness scores per construct over sprint reviews.

more aware of the SEC and would keep the topic in mind
during development, hence implying a change in behavior.
However, the focus remains on software functionality in line
with product strategy and customer demand.

Software architecture: With C2 and C3, stakeholders from
both cases increasingly want to know the SEC of their software
product, which seems in contrast with the RS scores on C1.
Investigating the individual statements for RS, we found a
potential explanation in the negative score concerning the
influence of software on energy consumption (i.e. -15 to -
6). In contrast with DG, where the case ends with a neutral
score on this statement. Rephrased, while there is an interest
in the SEC, with RS there is doubt on the impact of the
software on energy consumption. One RS developer stated
from previous experiences with mobile software that the
effectiveness of any effort is clouded by the different layers
of the software stack (e.g. operating system and middleware).
While the move towards a more neutral sentiment indicates
a greater acknowledgement of the role of software, hardware
and other aspects are still believed to have a greater impact
on the energy consumption.

When asked, RS stakeholders appointed software architects
as the main actors in relation to SEC along with hardware
manufacturers, and a declining role for software developers.
In contrast, DG stakeholders consistently appoint software
developers and architects as the main actors. These findings
provide a plausible reason for the sentiment on C3 and
remained negative sentiment on specific statements for this
construct. For example, given the large group of developers

involved, the RS stakeholders maintain a negative sentiment
towards the statement on spending more time to reduce the
SEC. However, driving the positive C3 score, RS stakeholders
acknowledge the importance of the applied techniques (+6)
and trade-offs with non-functional requirements (+4).

The results for C6 also confirm the focus on software archi-
tecture. For example, stakeholders reconsidered the statement
on including code optimizations to reduce the SEC in the
backlog (+6 to -3 with DG, and +11 to +6 for RS). A possible
cause is that the stakeholders increasingly positioned SEC in
relation to non-functional requirements of the software [4],
which are typically not included in the backlog. This finding
could explain the stakeholders’ negative sentiment towards the
statement that the benefits of rewriting the code to reduce the
SEC exceed the costs.

Learning curve: The statements of C3, on the extent to
which the applied techniques and making trade-offs with non-
functional requirements can contribute to reducing the SEC,
suggest a learning curve took place. Starting with positive
scores, stakeholders from both cases appear to underestimate
the complexity involved with reducing the SEC. After the
first dashboard presentation, the scores became negative with
stakeholders realizing the complexity involved. The movement
towards a neutral or even positive score follows after stake-
holders better comprehend the SEC. Interesting to note is that
DG stakeholders indicate the SEC is not discussed during
(in)formal meetings (C5), whereas a lively discussion on SEC
took place during multiple sprint reviews. The RS scores move
from -17 to -8 on the latter statement, and the evaluation
learned that SEC is discussed by specific groups, e.g. lead
developers and architects, within the team.

SEC on the team agenda: Given the developments with
C1, C2 and C3, a decline with C4 was expected. With DG
a slight positive sentiment remains as the stakeholders are
willing to address the SEC when allowed to spend time on
this aspect. However, in line the discussion so far, RS becomes
negative (+4 to -7) on this statement.

Stakeholders from both cases indicated extra attention to-
wards SEC is only required when reduced energy consumption
becomes a requirement from the customer or a strategic driver
within the organization. Here we also find a difference between
cases; the DG team could obtain a strategic advantage by being
delivering a more ‘sustainable’ product, whereas RS did not
identify this advantage within their markets. A finding that fits
the survey results and potentially shows a difference between
the markets involved in the study.

Willingness: The statement on seeing other teams address
the SEC (C5) moves from a negative (-2) to a positive (+2)
sentiment with DG and increases from +1 to +3 with RS.
Additionally, both cases acknowledged that reducing the SEC
benefits the organization and the customer, however customer
demand and market trends lead in determining the future
of the product. The results indicate a willingness to address
the SEC when sustainability goals are formulated and clear
benefits can be identified. However, even without strategic
goals an SPO could benefit from promoting energy efficient



Figure 6. DG case: The scores on the individual acceptance statements (survey C), grouped per construct.

Figure 7. RS case: The acceptance scores per construct over sprint reviews.

software development. An overall reduction of the total cost
of ownership for a product allows an SPO to, e.g., maintain a
more competitive pricing model.

B. SQ2: Stimulus to trigger SEC awareness

Solely based on the acceptance results (cf. Fig. 6 and
Fig. 7), our conclusion would be that the dashboard does
not appear the right means to trigger awareness with respect
to SEC: while the dashboard is easy to use, shown by the
effort expectancy (EE), it does not stimulate to perform target
behavior (AT) or to positively influence technology usage (BI).

Confronting: Interpreting the scores in light of the aware-
ness scores, we can only partially explain the negative senti-
ment found in the scores. If stakeholders do not know how
to reduce the SEC or become aware of the limitations im-
posed by, e.g., the technology used, presenting the dashboard
could frustrate and result in a negative sentiment towards the
dashboard. To this end, the dashboard does trigger awareness,
be it in a confronting manner. This suggests that awakening
awareness would be effective when combined with software
engineering knowledge on how to decrease the SEC.

Despite potentially being confronting, ‘Using the dashboard
is a good idea’ (AT) is one of few positive statements for
RS. Also DG stakeholders indicate they like working with
the dashboard and that the dashboard makes work more
interesting. However, DG stakeholders did not find using the
dashboard a good idea. While we cannot explain the unex-

pected decline with the latter, the results potentially indicate
the dashboard to contain useful elements in this context.

Presentation frequency: Apart from being confronting, the
frequency of presenting the dashboard, i.e. after every sprint,
could also have contributed to the negative sentiment. For
example, while the statement concerning the usefulness for
the job starts positive in both cases, consecutive measurements
indicate a negative sentiment. During the evaluation, stake-
holders indicated that the SEC should not be inspected after
every sprint, unless there is a concrete motive to do so. Instead,
similar to other quality attributes, a periodical evaluation of the
SEC is considered to be sufficient.

Target audience: with DG a contrasting finding is found
with the PE statements (Fig. 6): while the dashboard is
considered increasingly less useful for the job, stakeholders
disagree less with using the dashboard as a means to increase
programming skills. The diversity of roles included in the
study, i.e. also non-developers, potentially explains this con-
trast, which would imply the dashboard in its current form
is role-specific and should be tailored for its target audience.
Combined with the SI results, indicating that stakeholders find
little support with others in using the energy dashboard, an
SPO should carefully consider what information to present on
a dashboard and to whom.

C. SQ3: incorporating SEC in the development process
The survey results indicate that the stakeholders are able to

make weighted decisions with respect to SEC, i.e. are aware of
the topic. However, for an SPO the ability to fulfill corporate
social responsibility goals with software products requires that
awareness is maintained. Based on the results, we can provide
the following related recommendations:

Formulate sustainability goals: Stakeholders indicated that
a reduced energy consumption benefits the organization and
the customer. When positioned as a strategic goal for the
organization, stakeholders can justify efforts to address the
SEC of their products. Additionally, by embedding SEC in
the organization, an SPO can also experience benefits from
the social norm that motivate stakeholders (C5). An effect that
can be potentially amplified by means of, e.g., gamification.

Set up knowledge bank: The overall impression, confirmed
by the results, is that there is limited knowledge on how to



actually address the SEC. Additionally, the results indicate
stakeholder increasingly becoming aware of the possibilities
in relation to SEC, which highlights the importance of having
an ECP [5] to guide decision-making. A knowledge bank on
this topic, containing e.g., tactics, patterns and best practices,
provides concrete guidelines, and potentially makes green
software practices more cost effective. Relating the knowledge
bank to the views in the ECP helps to make trade-offs on the
different aspects related to software design and strengthens the
relation with sustainability goals.

Quantify SEC: Despite the limited acceptance, the energy
dashboard proved useful to show the effects of development
efforts. Quantification makes SEC more concrete, hence en-
abling informed decision making. Additionally, the energy
dashboard can highlight specific achievements and potentially
encourage development efforts to further improve the software
quality. For example, the reduced CPU utilization by solving a
long term bug in RS (see Fig. 2) was put in the spotlight using
the energy dashboard. When an energy dashboard, or similar
stimulus, is to be implemented, an SPO needs to keep the
target audience in mind as this could greatly affect acceptance.

VII. THREATS TO VALIDITY

This section presents the threats to validity as required by
[33], [35], [36]. For our study, the threats to validity can be
related to two separate aspects; performing SEC measurements
and the case study itself. With respect to the former, we
applied the methodology as described in [8] and as such were
confronted with the same threats to validity. Specifically the
reliability of JM, measurement interval, operating system ef-
fects, energy consumption overhead and measurement tooling
were of concern, and countered in the same manner [8]. In this
section, we focus on the latter aspect, the case study itself.

For the internal validity, uncontrolled factors that might
affect our results, we acknowledge that stakeholders could
have modified their behavior in response to being observed, i.e.
the Hawthorne effect. Additionally, following the principal-
agent problem, the motivation of the stakeholders to address
SEC could be affected by their (in)ability to choose the
technology being used and the fact that they do not pay the
energy bill. To minimize the effects we respectively minimized
the intrusiveness of our protocol and focused on the personal
experience with our survey statements.

External validity addresses the extent to which the results
can be generalized. While our inclusion criteria could exclude
SPOs from participating in our study, we argue that RS and
DG are representative for cases found in the software industry.
However, we do acknowledge the limited ability to generalize
findings beyond the two specific cases, and the limited number
of participants should be considered to, at best, provide
insight in SEC-related awareness in software engineering.
Additionally, further investigation is required into cultural
differences. Although the cases were separate enough within
the case company, thereby not affected by company-wide
cultural aspects, we were not able to investigate differences
between countries which would require more case studies.

The construct validity, the degree to which the measures
capture the concepts of interest, is focused around the survey.
First, the definition of awareness allowed us to create a survey
and perform the case study. However, as it is a field on its own,
we do not aim to provide a general definition of the term.
The resulting survey statements are systematically developed
and valid proxies for awareness. Other statements might be
included depending on the context, such as the software and
the organization under study. To minimize this threat we
carefully designed our study around the model in Fig. 1, and
established a chain of evidence that allowed us to relate the
individual statements to the six awareness constructs.

Finally, reliability considers the extent to which research is
dependent on the specific researchers. By describing, in detail,
the protocol that was followed as well as the forthcoming anal-
ysis, we provide openness in the research that is performed.
Deviations from the protocol were described as such. With
respect to the sentiment analysis being researcher dependent,
we support our claims with the data obtained from the study.

VIII. CONCLUSIONS

In this paper we present the results of a embedded multi-
case study performed with two cases regarding two commer-
cial software products. To provide an answer to our main
research question “how to create and maintain awareness of
the energy consumption perspective in software product devel-
opment?”, we first investigated three sub-research questions.

To measure awareness (SQ1) we constructed a survey based
on six constructs that directly and indirectly affect awareness.
Although the survey is specific for our purposes and by no
means a generic solution, the survey data allowed us to express
awareness using a score. As a stimulus to trigger awareness
(SQ2), an energy dashboard was created including those
measurements the stakeholders consider relevant in relation
to the software product in their daily practice. The survey
and dashboard were combined in the overall multi-case study
organization, hence incorporating SEC awareness creation and
the related impact in the software development process (SQ3).

With respect to creating awareness, we found the stakehold-
ers of both cases to actively discuss the topic during the case
study and able to make weighted decisions with respect to
SEC. In other words, appropriate stimuli help awaken SEC
awareness. To maintain SEC awareness, our results show that
organizational policy is required to support creating green
software products strengthened with a knowledge bank to
stimulate informed decision making on software design.

In future work, we plan to automate the testing activity
in case study organization to further lower the threshold to
perform SEC measurements. Also we plan to investigate the
SEC with individual development efforts, e.g. commits, to
distill guidelines for green software knowledge banks.

ACKNOWLEDGMENTS

We would like to thank the DG and RS teams for their
participation in our research, and Fabiano Dalpiaz, Garm
Lucassen, Başak Aydemir and Matthieu Brinkhuis for their
valuable discussions and feedback to improve the paper.



REFERENCES

[1] A. Hindle, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software Engineer-
ing, pp. 1–36, 2013.

[2] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, F. Paulisch,
G. Scanniello, B. Penzenstadler, and O. Zimmermann, “Exploring ini-
tial challenges for green software engineering: summary of the first
GREENS workshop, at ICSE 2012,” ACM SIGSOFT Software Engi-
neering Notes, vol. 38, no. 1, pp. 31–33, 2013.

[3] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing
sustainability as a property of software quality,” Commun. ACM, vol. 58,
no. 10, pp. 70–78, sep 2015.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI Series in Software Engineering. Pearson Education, 2012.

[5] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom, and R. van
Vliet, “Extending software architecture views with an energy consump-
tion perspective,” Computing, pp. 1–21, 2016.

[6] ISO, “Systems and software engineering – systems and software quality
requirements and evaluation (SQuaRE) – system and software qual-
ity models,” International Organization for Standardization, Geneva,
Switzerland, ISO 2510:2011, 2011.

[7] R. Kazman, M. Klein, M. Barbacci, and T. Longstaff, “The architecture
tradeoff analysis method,” in 4th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS) 1998. IEEE,
1998, pp. 68–78.

[8] E. A. Jagroep, J. M. E. M. van der Werf, S. Brinkkemper, G. Procac-
cianti, P. Lago, L. Blom, and R. van Vliet, “Software energy profiling:
Comparing releases of a software product,” in Proceedings of the 38th
International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 523–532.

[9] E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and
J. Visser, “Profiling energy profilers,” in Proceedings of the 30th Annual
ACM Symposium on Applied Computing. ACM, 2015, pp. 2198–2203.

[10] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engineering, pp. 1–42, 2015.

[11] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 12–21.

[12] A. Noureddine, S. Islam, and R. Bashroush, “Jolinar: Analysing the
energy footprint of software applications (demo),” in The International
Symposium on Software Testing and Analysis, ser. Proceedings of
the 25th International Symposium on Software Testing and Analysis,
Saarbrücken, Germany, Jul 2016, pp. 445–448.

[13] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, May 2016.

[14] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about soft-
ware energy consumption,” in Working Conference on Mining Software
Repositories, ser. MSR. New York, NY, USA: ACM, 2014, pp. 22–31.

[15] G. Procaccianti, H. Fernàndez, and P. Lago, “Empirical evaluation of
two best practices for energy-efficient software development,” Journal
of Systems and Software, vol. 117, pp. 185–198, 2016.

[16] L. Xu and S. Brinkkemper, “Concepts of product software,” European
Journal of Information Systems, vol. 16, no. 5, pp. 531–541, 2007.

[17] S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A
reference model for green and sustainable software and its engineering,”
Sustainable Computing: Informatics and Systems, vol. 1, no. 4, pp. 294–
304, 2011.

[18] E. Jagroep, J. M. E. M. van der Werf, J. Broekman, S. Brinkkemper,
L. Blom, and R. van Vliet, “A resource utilization score for software
energy consumption,” in Proceedings of the 4th International Conference
ICT for Sustainability, ser. Advances in Computer Science Research.
Amsterdam, The Netherlands: Atlantis Press, 2016.

[19] E. Matthies, “How can psychologists better put across their knowledge
to practitioners? suggesting a new, integrative influence model of pro-
environmental everyday behaviour,” Umweltpsychologie, vol. 9, no. 1,
pp. 62–81, 2005.

[20] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 225–236.

[21] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: ACM, 2016, pp. 488–498.

[22] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 237–248.

[23] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
in Proceedings of the 7th ACM european conf. on Computer Systems,
ser. EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 29–42.

[24] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software
energy consumption with energy measurement corpora,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 49–60.

[25] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging role
of data scientists on software development teams,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 96–107.

[26] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444 – 449, 2013, scalable Algorithms for Large-Scale
Systems Workshop (ScalA2011), Supercomputing 2011.

[27] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: Fine-grained
power management for multi-core systems,” SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 302–313, 2009.

[28] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in Proceedings of the 39th Annual International Symposium
on Computer Architecture, ser. ISCA ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 225–236.

[29] P. Lago and T. Jansen, “Creating environmental awareness in service
oriented software engineering,” in Service-Oriented Computing, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
vol. 6568, pp. 181–186.

[30] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in
empirical software engineering,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: ACM, 2016, pp. 108–119.

[31] H. S. Zhu, C. Lin, and Y. D. Liu, “A programming model for sustain-
able software,” in International Conference on Software Engineering -
Volume 1, ser. ICSE. IEEE Press, 2015, pp. 767–777.

[32] R. Yin, Case Study Research: Design and Methods, ser. Applied Social
Research Methods. SAGE Publications, 2009.

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslé n, Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

[34] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung,
F. Kurniawati, M. Staples, H. Zhang, and L. Zhu, “Evaluating guide-
lines for reporting empirical software engineering studies,” Empirical
Software Engineering, vol. 13, no. 1, pp. 97–121, 2008.

[35] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[36] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer, 2010.

[37] T. Nagel, “What is it like to be a bat?” The Philosophical Review, vol. 83,
no. 4, pp. 435–450, 1974.

[38] R. E. Dunlap, “The new environmental paradigm scale: From marginal-
ity to worldwide use,” The Journal of Environmental Education, vol. 40,
no. 1, pp. 3–18, 2008.

[39] V. Viswanath, M. G. Morris, G. B. Davis, and F. D. Davis, “User
acceptance of information technology: Toward a unified view,” MIS
Quarterly, vol. 27, no. 3, pp. 425–478, 2003.

[40] M. D. Williams, N. P. Rana, Y. K. Dwivedi, and B. Lal, “Is utaut really
used or just cited for the sake of it? a systematic review of citations of
utaut’s originating article.” in ECIS 2011 Proceedings, 2011.

[41] M. B. Miles and A. M. Huberman, Qualitative data analysis: An
expanded sourcebook. Sage, 1994.

[42] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found.
Trends Inf. Retr., vol. 2, no. 1-2, pp. 1–135, Jan. 2008.


