
Noname manuscript No.
(will be inserted by the editor)

Extending Software Architecture Views with an Energy
Consumption Perspective
A case study on resource consumption of enterprise software

Erik Jagroep · Jan Martijn E.M. van der Werf ·
Sjaak Brinkkemper · Leen Blom · Rob van
Vliet

Received: date / Accepted: date

Abstract The rising energy consumption of the ICT industry has triggered a quest
for more sustainable, i.e. energy efficient, ICT solutions. Software plays an essential
role in finding these solutions, as software is identified as the true consumer of power.
However, in this context, software is often treated as a single, complex entity instead
of the interrelated elements that it actually consists of. Although useful results can
be gained, this approach fails to provide detailed insight in the elements that invoke
specific energy consumption behavior. As a result, software vendors are not able to
address energy consumption on software level.
In this paper, we propose an energy consumption perspective on software architecture
as a means to provide this insight and enable analysis on the architectural elements
that are the actual drivers behind the energy consumption. In support of this perspec-
tive, we also position sustainability as a potential quality attribute thereby provide
a means to quantify energy consumption aspects related to software. In a case study
using a commercial software product the perspective and quality attribute are applied,
demonstrating the potential by achieving an energy consumption saving of 67.1%.

Keywords Software Architecture · Energy consumption perspective · Sustainabil-
ity · Quality attributes

Mathematics Subject Classification (2000) 68N99

Erik Jagroep, Jan Martijn E.M. van der Werf, Sjaak Brinkkemper
Utrecht University
Department of Information and Computing Sciences
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: {e.a.jagroep,j.m.e.m.vanderwerf,s.brinkkemper}@uu.nl,

Erik Jagroep, Leen Blom, Rob van Vliet
Centric Netherlands B.V.
P.O. Box 338, 2800 AH Gouda, The Netherlands
E-mail: {erik.jagroep, leen.blom, rob.van.vliet}@centric.eu

2 Erik Jagroep et al.

1 Introduction

The Energy Consumption (EC) of the Information and Communication Technol-
ogy (ICT) sector is a booming topic of interest. Recent figures indicate that at least
a tenth of the world’s electricity use is on behalf of ICT [23]; a figure that has kept
growing over the years. As a result of the increased awareness on the subject, the term
‘sustainability’ has emerged which is to “meet the needs of the present without com-
promising the ability of future generations to satisfy their own needs” [25]. Within
the research community this resulted in much attention going towards increasing the
energy efficiency of ICT.

Until recently the focus has mostly been on hardware related aspects as improve-
ments on hardware level are relatively tangible and easy to apply, e.g. renewal of
hardware. However, in [21] the role of software is also stressed in finding sustainable
ICT solutions. While energy is directly consumed by hardware, the operations are
directed by software and can eliminate any sustainable features built into the hard-
ware [34]. Thus software is argued to be the true consumer of power [35].

In research software is often treated as a single, complex entity (i.e. consid-
ered on application level) instead of the inter-related elements it actually consists of
(cf. [12, 17]). A breakdown into hardware components and ‘units of work’ is made,
but allocating EC to individual software modules has proven to be a difficult task [29].
Consequently, a stakeholder does not know which modules and functions invoke spe-
cific energy consuming behavior making it difficult to direct sustainability efforts
concerning software to where they are needed.

We argue Software Architecture (SA) is able to fill this gap and in this paper we
investigate how EC can be positioned within the scope of SA in the context of product
software, i.e. ‘a packaged configuration of software components or a software-based
service, with auxiliary materials, which is released for and traded in a specific market’
[36]. An Architecture Description (AD) of product software complemented with EC
measurements, could help to direct green computing efforts (i.e. Energy Efficient
(EE) algorithms [14]) and determine appropriate adjustments on the right locations.
More specifically we focus on on-premise software products, i.e. products of which
multiple instances exist on different locations (e.g. due to regulations). The potential
of on-premise product software, in contrast to tailor-made software, is in the fact
that a change finds its way to each deployment, thereby multiplying the potential
impact with each installation. In [13] a decrease in EC of 0.25 Watt with four million
installations is presented to save the EC equivalent to that of an American household
per month, showing that even the smallest change could have a major impact.

With our research we contribute to the research domain in multiple ways. First
and foremost, we provide an EC perspective on SA following the detailed format and
viewpoint catalog described by Rozanski and Woods [32] including: the applicability
to views through key questions, concerns that can be addressed, activities for appli-
cation and architectural tactics. Problems and pitfalls and checklists, also included
in the format [32], come with experience and are deemed future research. Second,
since a perspective addresses quality properties [2,32], we position sustainability as a
Quality Attribute (QA) following the ISO 25010 standard format. Quality properties,
measures and measure elements provide a means to quantitatively describe software

Extending Software Architecture Views with an Energy Consumption Perspective 3

aspects related to EC. Through an experiment, that builds on a recently published case
study [16], the perspective is validated. The potential of our research is demonstrated
by realizing a reduction in energy consumption of 67.1% in a case study.

The remainder of this paper is structured as follows. We first present the related
work on energy consumption and SA Sect. 2 and position sustainability as a QA
(Sect. 3). With this knowledge an energy consumption perspective (Sect. 4) is con-
structed and applied in practice (Sect. 5). Finally, we provide a conclusion and iden-
tify directions for future research (Sect. 6).

1.1 Document Generator as a Real-Life Example

Before continuing with the related work we introduce a case in the form of Document
Generator (DG); a commercial software product used to generate over 30 million
documents per year. DG is used by approximately 300 customers with 1000 end-
users as a complementary product with other commercial software products.

The basic workflow for DG (right side of Fig. 1) is initiated by a trigger from
an external application. After validation of the received input, DG collects the data
and document definitions, managed in separate systems, and merges the data into
a preview for approval. After approval, the actual generation is performed and the
documents are archived (optionally in a DMS) and communicated to a required outlet.

Figure 1 also includes a mapping of the workflow onto the functional architecture
of DG. The ‘Connector’ element contains four sub-elements and is responsible for
four of the six activities in the workflow, namely receiving input, collecting data,
archiving and communicating. Together with the ‘Composer’ element, responsible
for merging the document definitions with data, the ‘Connector’ element handles the
required activities before and after document generation. ‘Utilities’ and ‘Interface’
respectively provide configuration options and an interface for DG and do not map

Fig. 1 The Document Generator (DG) workflow mapped on the functional architecture.

4 Erik Jagroep et al.

onto an activity in the workflow. Finally the ‘Generator’ is responsible for the actual
generation of the documents and corresponds to the generate activity.

For this research we focus on the application server including the connector.exe,
config.exe, interface.exe and document.exe processes (i.e. concurrency units). Repre-
sentative for an actual production installation, these processes run on a single server
(i.e. deployment) which is labeled the ‘Application server’. The database server is
considered out of scope for this research. In the remainder of this paper, the DG case
is used to provide concrete examples for the perspective.

2 Related Work

In [8], the term sustainability is used for analyzing ecological, economical and social
dimensions (of ICT), without compromising the ability of future stakeholders to meet
their needs. Our research fits the area of green software, a niche of sustainability
where the software is the object of optimization [21], and is mainly focused on the
ecological aspect. Before we can continue to construct the EC perspective we need
to discuss the matters of measuring the EC of software and its relation to SA.

2.1 Energy Consumption Measurements

One of the main issues with respect to green software is to perform detailed EC mea-
surements. Specialized environments, e.g. [11], enable measurements on each indi-
vidual hardware component and provide detailed insight into how software affects
these components. In these setups, the EC of software is measured by relating the EC
of hardware to computational resource usage on behalf of the software and, conse-
quently, energy efficiency refers to the efficient use of computational resources [12].
However, these environments are rare, difficult to expand to more complex environ-
ments (e.g. data canter) and only few are able (and willing) to invest in the equip-
ment required for such a solution. At the cost of details, external power measurement
equipment can also be used.

Compared to hardware measurements, software approaches can specifically fo-
cus on the software under investigation and measure on more detailed levels. The
‘E-Surgeon’ solution [28] for example, enables its user to monitor the EC of soft-
ware during runtime down to the classes and methods. Although promising results
are obtained, applying the ‘E-Surgeon’ solution requires expert knowledge on the
subject which potentially inhibits its adoption. The same holds for instrumenting the
software [31]. A more simple software-only approach is to use energy profilers [27];
software tools including a power model with the ability to estimate the software EC
on different levels of granularity. Unfortunately recent study has found energy profil-
ers to not always provide the desired results [15].

EC measurements become even more complex when the entire computing stack is
in play, as each layer between software and hardware level (e.g. operating system, vir-
tual machine) is said to amplify the EC induced by the software [7]. In the paradigm
of ‘programmable web’ [6], end users can easily create applications tailored to their

Extending Software Architecture Views with an Energy Consumption Perspective 5

own needs. Without proper control of the layers at play, the explosion in number of
applications could have disastrous effects on the EC of the underlying infrastructure.
Since the impact of each layer is a research topic on its own, we consider this as
future research and maintain focus on the software product and its architecture.

A final aspect with regard to EC measurements is the deployment of the soft-
ware product. Nowadays, software is often distributed across multiple servers, or
even across federated data centers, and resources are shared with other applications.
In [10] ’Green Performance Indicators’ (GPIs) are proposed for these environments
that, apart from EC measurements, require detailed performance monitoring to as-
sign (portions of) the EC to specific software elements. Obtaining the required data
requires appropriate performance measurements and either a software or hardware
approach for EC measurements, depending on the level of detail required.

2.2 Relating Green Software to Software Architecture

While the hardware and software approaches for measuring have up- and down-sides
to them, both serve the same purpose; identify ‘software energy hotspots’ [31] which
are the measurable elements or properties that have a significant impact on the EC.
The proposition of green software is to have software that requires the least amount
of resources as possible while performing the required task(s).

From a software vendors’ perspective, investment in new hardware or optimiz-
ing the current hardware is considered less costly than having a slower development
cycle. Currently, performance is optimized on hardware level and software engineers
are instructed to write software at a high pace with the risk of delivering sub-optimal
code and algorithms. It is the experience of the authors in industry that still too little
is known with regard to the potential benefits of green software to create a valid busi-
ness case. There is light on the horizon, however, with green software examples and
guidelines becoming increasingly more available [3, 24, 26, 39] and concrete 1. Even
without changing the current practice of software engineers [26].

At its core the creation of EE software starts with the design of the software [3],
i.e. with its architecture. Using the SA to determine meaningful units, e.g. archi-
tectural elements, can make the software and its context for development easier to
understand, control and influence. A similar approach is applied in a wider context
for the green performance indicators model [10, 19] containing separate controllable
elements on different layers. The relation between these elements shows how ‘green
goals’ shine through from top (organizational) level down to the hardware level with
software in between. Through software architecture, we propose to unravel the appli-
cation layer of the model and take a more detailed look into the software itself, i.e.
turn software into a ‘white box’.

Different views that map the EC on software artifacts already exist. The node
map presented in [12] for example, closely resembles what could be labeled as a
deployment view showing the installation of software elements across the available

1 https://wiki.cs.vu.nl/green_software/index.php/Best_practices_for_
energy_efficient_software accessed 19-08-2015

https://wiki.cs.vu.nl/green_software/index.php/Best_practices_for_energy_efficient_software
https://wiki.cs.vu.nl/green_software/index.php/Best_practices_for_energy_efficient_software

6 Erik Jagroep et al.

hardware. Analyzing the node map on EC provides a so-called ‘heat map’ of the sys-
tem. Following this same line, [17] presents the ‘ME3SA’ model in which again the
deployment and functional components of the software are investigated. In relation to
green software, a limitation of both approaches is that most recommendations relate
to hardware aspects and only provide ‘strong clues’ on software level.

For embedded software, software that accompanies an appliance [36], research on
EC also adopts an architectural approach. In [37] a method is presented to determine
the minimum EC path through Petri Nets and reachable state graphs. Others propose
to create modular software and collect utilization data of functional elements which is
used by a resource utilization model [5] functioning as ‘energy broker’. An approach
that has recently also been applied to software in general [28]. Although embedded
software is often less complex compared to product software, due to its specific, lim-
ited functionality for the appliance, a modular approach, which resembles an AD,
helps to better understand its energy consuming behavior. Similar to product soft-
ware, a multiplying effect could also be achieved with embedded software.

An advantage of using the SA is to address concerns related to EC in an early
stage of the software life cycle, namely during its design. Through the architecture,
a product manager, that determines the strategic direction (including green goals) for
a product [9], has a means to address his concerns in the product design [32] and
determine whether the desired quality of service is achieved [20]. From an organi-
zational perspective such an approach emphasizes the role that green software can
play in reaching sustainability goals. On this level, green software has the potential
to reduce the operational costs related to a software product, enabling sustainability
on the economical dimension [8].

3 Sustainability as a Quality Attribute

Within the research community sustainability is proposed as a QA with resource
consumption, greenhouse gas emissions, social sustainability, and recycling as sub-
characteristics [21, 22]. However, while the importance of relating EC to software
products is acknowledged, there is still dividedness as a solution is also sought with
existing QAs (cf. [12, 17, 18]. In [17], for example, ‘performance efficiency’ (ISO
25010) is transformed into ‘energy efficiency’ with three high-level issues ; energy

Fig. 2 A partial breakdown of the sustainability characteristic linked to the ISO 25010 standard.

Extending Software Architecture Views with an Energy Consumption Perspective 7

behavior, capacity and resource utilization. Also ‘energy efficiency’ itself has been
positioned as a QA [30].

Following the format of the existing ISO 25010 standard we continue by propos-
ing sustainability as a QA and direct our focus specifically on the resource consump-
tion subcharacteristic. While resource consumption closely resembles the existing
‘resource utilization’ subcharacteristic, i.e. a specific resource (energy) is utilized,
there is a significant difference in focus between sole computational resources and
what we described as ‘sustainability’ [22]. The (sub)characteristics are not mutually
exclusive though, as the associated measures could be similar.

Since a SA allows or precludes nearly all QAs [2], the relation between sustain-
ability as a QA and our research is explained. Following conventions of the ISO
25010 standard, resource consumption should decomposed into quality properties
complemented by a measurement method to make the attribute measurable. From lit-
erature study [4, 12, 17–19], software utilization, energy usage and workload energy
were distilled as potential quality properties:

– Software utilization is the degree to which resources specifically utilized on the
account of a software product meet requirements.

– Energy usage is the degree to which the amount of energy used by a software
product meets requirements.

– Workload energy is the degree to which the EC related to performing a specific
task using a software product meets requirements.

The first two properties represent the low-level measurements, whereas the latter is
used to characterize a software product in such a way that it facilitates discussion
between stakeholders [12]. Although further research into this matter is required, for
now we assume that these quality properties, representing four out of six metric types
identified in [4], cover the resource consumption subcharacteristic.

3.1 Quality Measures for Energy Consumption

Unless (sub)characteristics can be directly measured, the measurable properties of a
system (quality properties) can be quantified using quality measures and measure el-
ements. Following the framework of the ISO 25010 standard consider the example in
Fig. 2, where the ‘sustainability’ characteristic is broken down to the level of quality
measure elements for the ‘workload energy’ property. To quantify ‘workload energy’,
the task energy consumption quality measure was identified along with three quality
measure elements for the measurement function.

In Table 1 a list is proposed of the quality properties, measures and measure ele-
ments identified for the ‘resource consumption’ subcharacteristic, including a defini-
tion of the quality measure and a measurement function containing quality measure
elements. For example, the task energy consumption quality measure (measure for
the energy consumed while performing a task) is calculated by subtracting the idle
EC from the EC while operating and divide by the number of tasks performed. As
the list is a starting point and by no means definitive, it could be changed or extended
based on new insights.

8 Erik Jagroep et al.

Starting with software utilization we argue that the knowledge gained from per-
formance research can be re-utilized, which is reflected through the fact that the pre-
sented measures (CPUU, MU, NT and DT) are common performance metrics provid-
ing insight into the behavior of hardware components. Compared to pure performance
metrics however, the presented measures are explicitly related to software. Since our
focus is on adjusting the software to become more sustainable, it is essential to know
how the hardware is stressed under conditions dictated by the software.

Quality measures directly related to EC are described under the energy usage and
workload energy properties. SEC is the most basic means of relating EC to software,
i.e. measuring the total EC and subtracting the EC while idle. The measure closely
resembles ‘annual component consumption (ACC)’ [17], without the inclusion of a
specific time frame. The remaining properties, UEC and RUEC, can be derived using
SEC and relate EC to a specific unit, e.g. separate elements or combinations thereof.
UEC is a measure to allocate a portion of SEC to a defined unit and requires detailed
performance data. RUEC puts the EC of a defined unit in perspective of the entire
software instance and can be used to quickly identify outliers in EC.

Table 1 Quality properties, measures and measure elements for the resource consumption sub-
characteristic.

Resource consumption
Software utilization

CPU Utilization (CPUU) Measure of the CPU load related to running the software.
current CPU load− idle CPU load

Memory Utilization
(MU)

Measure of the memory usage related to running the software.

allocated memory
total memory × 100%, working memory, Private bytes, Vir-

tual bytes
Network Throughput
(NT)

Measure of the network load related to running the software.

Packages per second, sent bytes per second, received bytes per
second

Disk Throughput (DT) Measure of the disk usage induced by running the software.
Disk I/O per second

Energy usage
Software Energy Con-
sumption (SEC)

Measure for the total energy consumed by the software.

EC while operating− idle EC
Unit Energy Consump-
tion (UEC)

Measure for the energy consumed by a specific unit of the soft-
ware.
(Unit CPUU

CPUU × Unit MU
MU × Unit NT

NT × Unit DT
DT)× SEC

Relative Unit Energy
Consumption (RUEC)

Measure for the energy consumed by a specific unit compared
to the entire software instance.
UEC
SEC × 100%

Workload energy
Task energy consump-
tion (TEC)

Measure for the energy consumed when a task is performed.

SEC
of tasks performed

Unit task energy con-
sumption (UTEC)

Measure for the energy consumed when a task is performed by
a specific unit of the software.

UEC
of tasks performed

Extending Software Architecture Views with an Energy Consumption Perspective 9

Using SEC and UEC, also TEC and UTEC can be calculated provided that the
stakeholder is able to define a task and knows the number of times this task is per-
formed during a measurement. TEC provides insight in the EC to perform a specific
task across units (e.g. functional elements) whereas UTEC considers the EC within
the limits of a defined unit. If UTEC is related to a specific software component, the
measure corresponds to the ‘component consumption per unit of work (CCUW)’ [17].

To increase the applicability of the measures, we decided to provide quality mea-
sure elements that can be either directly measured or derived from the total EC.
For the measurement method this implies that performance monitoring tooling is re-
quired, ideally on the level of individual hardware components and processes, as well
as tooling to perform EC measurements. For the latter both software and hardware
solutions exist, capable of measuring at least the total power or EC for a system. Com-
bining measurements from these sources in the measurement functions, provides the
required information to quantify the subcharacteristics. Applying the measurement
method might require more effort as environments become more complex. Shared
resources, for example, require detailed performance measurements to allocate EC to
specific instances of software.

3.2 Trade-offs between Quality Attributes

In relation to the other QAs, the possibility exits that trade-offs have to be made
when conflicting goals arise. For example, keeping a log to maintain non-repudiation
(security) could negatively affect the TEC of a software product. Making trade-offs
however, should not be considered as an inhibiting factor. By making EC explicit, this
aspect can be structurally included in a trade-off analysis. Rather than sustainability
as an optional goal, a stakeholder can make a shift towards structurally relating sus-
tainability to software products, i.e. sustainability by design. Although our research
is focused on the application level, adjustments on a different level (i.e. infrastructure
and middleware [10]) could turn out to be more appropriate.

A concrete trade-off related to EC is on the balance between demand and sup-
ply in resource allocation [39]. If more computational resources are available than
required for a task, this should not automatically mean that extra resource should be
assigned to this task (i.e. sustainability versus performance). Making trade-offs be-
comes more dynamic when service level agreements are in place. To minimize the
total cost of ownership, software vendors and hosting parties strive for the lowest
possible EC while still meeting agreements with customers. Effective resource man-
agement is essential to manage these environments [1].

4 Energy Consumption Perspective on Software Architecture

A common way to address the consequences of design decisions on a QA is via an ar-
chitectural perspective, which is ‘a collection of activities, tactics, and guidelines that
are used to ensure that a system exhibits a particular set of related quality properties
that require consideration across a number of the systems architectural views’ [32].

10 Erik Jagroep et al.

Perspectives are a means to systematize the tasks of an architect, e.g. identify, test,
and select architectural tactics to address cases when the architecture is lacking, and
provide a framework to guide and formalize the process.

In this section we present the EC perspective including the applicability to views
(including concerns), activities and tactics, following the detailed format presented
by Rozanski and Woods [32]. As it is not possible to provide an exhausting set of
guidelines, we recommend similar research (e.g. [12, 17, 28]) as guidance.

4.1 Viewpoint Catalog

To characterize the different views within an AD, views are grouped into viewpoints
that focus on similar aspects within the design. Together, these viewpoints define the
viewpoint catalog consisting of seven viewpoints (Fig. 3) [32] that can be used to cre-
ate an AD of the software product focusing on different aspects of the system. Each
of the viewpoints defines concerns of a stakeholder, such as requirements, objectives,
intentions and aspirations, that the views following that viewpoint should address.

The system design is reflected in the functional viewpoint, the information view-
point, and the concurrency viewpoint which focus on respectively the product’s func-
tionality, data aspect and the runtime. The deployment viewpoint defines the runtime
environment for the software, complemented by the operational viewpoint defining
the operation of the software when deployed. Implementation constraints for the soft-
ware are defined in the development viewpoint. Finally, the context viewpoint defines
economic and social aspects of EC in relation to the software design.

To develop an architectural perspective on EC, we address each of the viewpoints
and explain how EC affects the viewpoint. For each viewpoint a key question is for-
mulated, that addresses the insight that a viewpoint should provide in relation to EC.
As these views cannot be seen in isolation, their consistency and interdependencies,
as portrayed in the flow of the key questions (Fig. 3), are crucial. Although we ac-
knowledge that not all viewpoints are required for each concern, given the novelty of
the perspective all viewpoints are explained.

Context viewpoint Views in the context viewpoint focus on the environment of the
software product, such as business drivers. The experience of the authors in the Dutch
software industry is that increasingly more organizations have sustainability in their
mission statement. As a consequence, customers of the software industry add sus-
tainability, among others EC, demands to their tenders. This demand is twofold. On
the one hand, there is an increased call for software to be developed in a sustainable
manner, on the other hand there is the focus on EC of the software product itself.
Thus, the contextual view should focus on answering how the software product can
help in achieving an organizational sustainability strategy.

Key Question 1 How can the software product architecture assist in achieving an
organization’s sustainability strategy?

One way to contextualize a sustainability strategy is to portray it as strategic goals
that should be met. For example, energy efficient software, does not only contribute

Extending Software Architecture Views with an Energy Consumption Perspective 11

to sustainability goals, it also provides a means to lower the total cost of ownership
for a software product, i.e. it influences the economic aspects (cf. [4]).

In our case study (DG), a lower total costs of ownership enables the software
vendor to be more competitive in terms of pricing, and helps in realizing sustainability
targets like reducing carbon emissions. In terms of the quality measures (Tbl. 1), a
reduction of SEC or UEC indicates a lower power consumption and thus reduced
carbon emission (not to mention the energy costs).

Operational viewpoint The operational viewpoint focuses on how the software is
executed, and is where the quality measure elements (Tbl. 1) are measured. Changes
from this viewpoint are often system-wide strategies that address operational con-
cerns. Thus a first step to improve the EC, from this viewpoint, is to fine-tune the
hardware configuration.

Key Question 2 How can run-time aspects be fine-tuned to reduce EC?

However, as software products typically run on diverse platforms, the architect
should specify in this viewpoint which elements are to be recorded and how these
elements can be combined into the different measure elements. This leads to a second
key question in the operational viewpoint:

Key Question 3 How can we measure the EC of the different nodes the software is
executed on?

For DG, in our limited scope, the architect specified to focus on the CPUU of the
‘Interface.exe’, ‘Connector.exe’ and ‘Document.exe’ processes which were executed
on the same server. If the database had been within scope, MU and DT would have
been added to the list for the database processes.

Deployment viewpoint The deployment view portrays the actual hardware environ-
ment of the software in terms of the processing nodes, data storage nodes and the
network topology of how these nodes are connected. Whereas in the operational
viewpoint the focus is on the complete system, the deployment viewpoint assists

Fig. 3 Viewpoint catalog after [32], expanded with the flow of key questions to address EC concerns.

12 Erik Jagroep et al.

the architect in relating the measures to the individual processes. Knowing which
processes run on what hardware provides the architect with valuable insights where
(EC) measurements should be performed. This aspect directly gives the key question
the deployment viewpoint should address:

Key Question 4 Which processes run on what hardware?

For example, DG can be deployed on multiple servers: one data storage server and
one or more processing nodes that each run parts of the application. Once the architect
creates a mapping between the individual processes (in this case, the executables) to
the different hardware nodes, the measures can be assigned and related to the different
components DG consists of.

Concurrency viewpoint The concurrency viewpoint shows how functional elements
map onto concurrency units, e.g. processes and threads, and forms the bridge between
functional elements and their deployment. Hence, the first key question is directly
related to this insight:

Key Question 5 How do the functional elements map onto processes?

Additionally, in this viewpoint, the parts of the system are identified that can
be executed concurrently. Concurrent processes potentially add to a reduced EC by
means of performance efficiency, depending on the coordination and control mecha-
nism required to do so. Again, like the operational viewpoint, a second key question
can be formulated:

Key Question 6 What processes can be executed concurrently without increasing
the resource consumption related to their coordination and control?

To calculate UEC for the ‘connector’ element of DG, the concurrency view shows
the processes that comprise this element and thus should be considered for their
resource consumption. By relating this mapping to the deployment viewpoint (key
question 4) we can distill the hardware that should be monitored.

Functional viewpoint The functional viewpoint is part of the system design itself.
It defines the elements of which the software is composed and the functions and
features these elements offer. This viewpoint is essential to define the boundaries of
a software product and identify the separate elements (and functions) of which the
energy consumption is of interest. Ideally, after measurements have been performed,
the view would include an indication of the EC per element:

Key Question 7 How much energy does each function consume?

The DG workflow (Fig. 1) is executed by three functional elements; ‘composer’,
‘connector’ and ‘generator’. If an EC figure can be assigned to these elements, de-
spite their deployment, a stakeholder can direct efforts to reduce the EC to where they
are needed most. In the case of DG, regardless of deployment, one question of inter-
est is “How much energy does the generation of one document cost?”. As multiple
elements are involved in this task, EE solutions can be directed to those functional
elements that stand out in terms of EC,

Extending Software Architecture Views with an Energy Consumption Perspective 13

Information viewpoint In the information viewpoint, the information is identified
that is used by and communicated between functional elements. From an EC per-
spective, and efficiency in general, it is essential to have the right information on the
right place at the right time:

Key Question 8 How can the information flow be optimized to increase EE?

For DG, critical data sections can be identified that might affect the processes in
terms of efficiency. If, for example, the data is locked to show a preview, replicating
the data could prevent the process from coming to a complete standstill. Of course, in
this case, other measures should be introduced to solve any conflicts that might arise.

Development viewpoint The development viewpoint is a starting point to support the
development process and contains aspects of interest to those stakeholders involved
in building the system. An overview of elements, for example, simplifies the context
for developers and prevents them from having to cope with the complexity of the
entire application. A developer is facilitated to focus on the code that drives the EC.

Key Question 9 What green algorithms can be applied to the software and where
should they be applied?

In the case of DG, the EC of the ‘connector’ element could be found dispropor-
tional. A proper AD could simplify the context for developers tackling the issue.

4.2 Perspective Activities

Following [32], we provide a set of activities (Fig. 4) to apply the EC perspective. By
applying the perspective a stakeholder has a means to analyze and validate the quali-
ties of an architecture and drive further architectural decision making. The activities
follow a ‘Plan-Do-Check-Act’ cycle where the iterations are focused on whether the
software meets certain requirements.

1. Capture energy requirements; Requirements form the basis for change in rela-
tion to SA [2] and should be considered when strategical, economical or customer
motives are present. Energy requirements can be formulated like other require-
ments, however it might prove difficult to translate the requirements into quanti-
tative goals. Cross-checking the goals with stakeholders is essential to ensure the
software will fulfill the requirements.

2. Create energy profile; An energy profile of the software provides the stakeholder
with an objective starting point and benchmark to identify ‘’hot spots’ and deter-
mine whether the desired results have been achieved. Creating the profile requires

Fig. 4 The activities to apply the perspective to software architecture.

14 Erik Jagroep et al.

EC and performance measurements and can be visualized by creating an overlay
for the AD, e.g. Fig. 7 is annotated with EC figures for the generator element.
Mind that profiling an application could be time-consuming where a profile for
the elements within the scope of current requirements could be sufficient.

3. Assess against requirements; Using the energy profile an assessment should
be performed on whether the software meets the requirements. i.e. whether the
quantified goals are met. If requirements are not met, the assessment should show
what quantitative goals are not met and the (software) aspects that are directly
related to these goals. Ideally this activity should be performed periodically or,
more specifically, when the application has changed.

4. Determine adjustments; If required, adjustments should be determined to meet
the requirements. Tactics (see Sect. 4.3), patterns and other known solutions should
be considered that affect specific ‘hot spots’ signaled by the quality measures. To
guide the selection process for selecting the right adjustments, a business case
should be created projecting the expected costs (e.g. development time and costs)
and benefits (i.e. EC savings over time). Since the area of green tactics is still rela-
tively immature, the perspective can also be used to investigate the consequences
of tactics. Using the AD, and relevant viewpoints, stakeholders can identify and
control possible (unwanted) effects on related architectural elements.

5. Apply adjustments; Applying the adjustments depends on the nature of the ad-
justments. Adjustments related to the infrastructure, for example, can be applied
on-the-fly by an administrator with little effort. Redesigning, or even adjusting,
the software on the other hand, often requires development resources and capac-
ity planning upfront. The resources required to apply an adjustments should be
included accordingly in the business case for the adjustment.

6. Evaluate adjustments; Last is determining whether requirements are met and
assuring no unwanted effects are brought about. Evaluation requires the stake-
holder to perform measurements in the newly created situation and compare the
figures against the benchmark (i.e. the energy profile). A stakeholder should give
a statement on whether the adjustments are satisfactory.

4.3 Green Architectural Tactics

To address concerns for a software product on the level of the SA, tactics are applied.
A tactic is a decision that influences the control of a QA [2] and is a design option that
helps the architect in realizing a desired property for a system. In relation to EC, there
is still work to be done to find a set of tactics that are able to satisfy the concerns.
Consequently, the presented tactics are by no means a definitive list but should be
considered as a source of inspiration for green software efforts.

In [30] a catalog is presented consisting of the energy monitoring, self-adaptation
and cloud federation categories. The categories are aimed at respectively collecting
power consumption information on infrastructure and software component level, op-
timizing during run-time and finding the most energy efficient services to perform
a task, and include several tactics that address energy efficiency in the cloud. Even

Extending Software Architecture Views with an Energy Consumption Perspective 15

Fig. 5 Setup of the test environment used to perform the case study.

though the tactics are explained specifically in a cloud computing context, they could
prove valuable for software in general.

Increase modularity; In terms of database calls, software consisting of fewer mod-
ules could require less calls while significantly more data is transferred per call. When
software consists of more modules, an increase in database calls could be observed
with the potential that less data is transferred per call, i.e. the calls are more fitted to
the process at hand. In this case less CPU capacity is required for processing the call,
lowering the EC per call. This tactic holds under the assumption that the increased
disk usage has a marginal impact on the EC figures.

Network load optimization; Although modularity can positively affect the EC of
software [5], more modules also implies a higher communication load. When the
number of modules increases, depending on the deployment, the communication load
that is induced on the infrastructure also increases. Although difficult to quantify in
terms of EC, a positive effect is expected when the communication load is reduced.

Increase hardware utilization [12]; Ineffective use of hardware is a common
source for energy inefficiency and is one of the triggers to consolidate the number of
active servers within a data center. From an EC point of view there is less hardware
in absolute terms reducing the idle energy consumption and the available hardware
is used more effectively. Variations in deployment imply that the software is able to
cope with variation and thereby could impose redesigning the software.

Concurrency architecture variation [38]; In this specific case the Half Synchronous
/ Half Asynchronous and the Leader / Followers concurrency architectures are com-
pared and a significant difference was found in the advantage of the first. Further in-
vestigation is required to test the generalizability of this finding, but the tactic could
prove useful for individual software instances.

5 Case Study: Applying the Perspective in Practice

To assess the perspective’s applicability, a case study was performed in which the
activities were applied to DG. Again following the red line throughout this paper,
the main concern during the case study was to reduce the EC of DG. To address
this concern we want to divide DG into separate, related elements and monitor the
energy consumption of these elements accordingly. Consequently, we consider the
functional, concurrency and deployment viewpoint in our case study (Fig. 7).

1. Capture energy requirements; We chose to focus on the main functionality of
DG and investigated an activity to generate 5000 documents on house rental,
where the generation of each single document is considered as a separate task. In

16 Erik Jagroep et al.

relation to EC we formulate the (non-functional) requirement for DG to consume
less energy while performing the specified task.

2. Create energy profile; In our case study, DG was installed in a test environment
consisting of a test server, logging server, client system and measurement equip-
ment (Fig. 5). DG was installed on the test server2 which consequently was the
system to perform measurements on. The measurement equipment, a WattsUp?
Pro (WUP) capable of measuring the total power drawn by an entire system with
a one second interval, measured the power drawn by the test server and perfor-
mance data was collected using Perfmon, a standard performance monitoring tool
with Microsoft Windows. A different deployment could require a more software
intensive approach using, e.g., energy profilers [15]. Finally, the client system was
used to trigger the required activity and data was collected remotely (i.e. without
human interference) using the logging server. To ensure consistency across mea-
surements (e.g. constant room temperature), the test server was located in a data
center.
After configuring DG a protocol was followed to perform measurements:

– Clear internal WUP memory.
– Close unnecessary applications and services on the test server.
– Start WUP and Perfmon measurements.
– Perform specified task using client.
– Collect and check Perfmon and WUP data from logging server.

In total 22 measurements were performed divided over six series, of which 19
measurements were considered valid. On average DG required 41 minutes and
49 seconds to generate the documents, with a SEC of 17560 Joule (J) (standard
deviation 3577 J) and an average TEC of 3.51 J per document.

3. Assess against requirements; The assessment consisted of creating a heat map
to discover ‘hot spots’. Recall (Sect. 1.1) that the ‘Generator’ element is respon-
sible for the actual document generation. Mapping the measurements on the AD
(Fig. 7), performance data shows a 49% CPUU of Document.exe, with an av-
erage utilization rate of 50.7% and 7.4% for the two available cores. The other

2 HP Proliant DL380 G5, Intel Xeon E5335 CPU, 800GB local storage (10.000 rpm), 64GB PC2-5300,
64 bit MS Windows Server 2008R2 (Restricted to 2 cores), VMware vSphere 5.1

Fig. 6 Comparison of CPU activity (2 cores) of the test server during a measurement before (single-
threaded) and after (multi-threaded) applying the architectural change.

Extending Software Architecture Views with an Energy Consumption Perspective 17

processes (Configuration.exe and Connector.exe) did not appear active. Since no
quantitative goal was formulated for the requirement, e.g. consume at most ‘X’
Joule per document, the EC profile was labeled as benchmark.

4. Determine adjustments; With the ‘Generator’ element identified as a EC ‘hot
spot’ and the CPUU imbalance as the possible driver, the tactic to increase hard-
ware utilization could potentially resolve our issue. Discussing the options with
stakeholders (i.e. architect and developer) brought to light DG’s inability for
multi-threading as possible cause.
The business case for making DG multi-threaded encompassed an estimation of
the development time and costs and the projected benefits. Estimations of the
benefits were made using the EC range of the application server (i.e. EC with
full CPU load - EC with idle CPU) and included a multiplication for each of the
separate DG installations that would benefit from these changes.

5. Apply adjustments; As the payback period for the business case turned out rel-
atively short (weeks), in collaboration with the developer DG was made multi-
threaded, changing the SA to evenly divide the load over the available cores
(shown on the right hand side of Fig. 7). The ‘balancer’ in the AD operates ac-
cording to the broker pattern.

6. Evaluate adjustments; To evaluate the adjustment, 33 (out of 36) valid measure-
ments were obtained (divided over seven series) following the described protocol.
On average DG required 39 minutes and 14 seconds to generate the documents
with a SEC of 5782 J (std. dev. 1647 J). Consequently TEC was reduced with
67.1% to an average 1.16 J per generated document and a significant decrease in
CPU activity was perceived (Fig. 6). The CPUU for Document.exe decreased to
an average 19.2%, divided 12.6% and 15.1% respectively, yielding higher gains
than projected in the business case. A critical note though; as the database server
was considered out of scope we did not include any effects on this hardware.

Fig. 7 The functional architecture of DG for subsequent releases including a concurrency view (executa-
bles) and deployment view (installed on a single application server).

18 Erik Jagroep et al.

5.1 Threats to validity

With regard to the validity of the case study, an evaluation is performed following the
threats as identified in [33].

The construct validity considers whether the correct measures were identified for
the object under study. In Section 3 we introduced sustainability as a QA and unrav-
eled this attribute to low level quality measures related to EC. During this process
we followed existing literature on both EC measurements and performance research
to operationalize the quality measures in terms of being able to perform measure-
ments. The resulting breakdown is similar to others in this field of research, where
performance measurements are used to relate EC to the software or elements thereof.

In light of the internal validity, despite careful preparations, due to the behavior
of services we can not be 100% certain that DG was solely responsible for the load
on the test server. Therefore each individual measurement was checked for such pro-
cesses using performance data. Also, due to time constraints, we could not balance
the number of measurements between creating the energy profile and evaluating the
redesign. At the start of the case study we lacked experience with configuring DG,
e.g. we experienced firewall issues, resulting in a lower number of measurements.
During evaluation we were more familiar with the case and relatively more valid
measurements were obtained.

A threat to the external validity is the fact that the case study was performed in
a separate test environment containing specific hardware. Given the relation between
hardware and EC, different hardware could provide different findings. Although the
EC figures could differ in absolute terms, since an actual commercial software prod-
uct was used and installed according to production standards, we argue that the results
are not specific to our environment.

Finally, reliability is concerned with the results, data and data analysis being de-
pendent on specific researchers; i.e. replicating the case study under similar condi-
tions should yield similar results. To this end the measurements within the case study
were performed by following a strict, openly described protocol. A difference could
occur with the statistical analysis of the data since, given the nature of the data, we
decided to process the data ‘as is’ where others might prefer to normalize the data.

6 Conclusion

In our quest to reduce the EC of the ICT industry through the software, we set out
to investigate how EC can be positioned within the scope of SA. We started out by
positioning sustainability as a QA and identified measurable, low-level elements for
the ‘resource consumption’ subcharacteristic. The presented quality properties, mea-
sures and measure elements provide a means to quantitatively evaluate the EC of a
software product by combining performance and EC measurements. Also, by con-
sidering sustainability as a QA, a stakeholder has a practical means to structurally
consider the sustainability of a software product; i.e. sustainability by design.

To actually relate EC to SA, an EC perspective was constructed that enables stake-
holders to identify, measure and analyze the EC of architectural elements. We identi-

Extending Software Architecture Views with an Energy Consumption Perspective 19

fied key questions for the viewpoints related to software design, described concerns
that can be addressed, provided architectural tactics and the activities to apply the
perspective in practice. Using the perspective, EC can be considered during the de-
sign phase of the software product extending the control a stakeholder has over the
desired quality properties. From hardware, through architecture down to code level.

As an initial validation of the perspective, a case study was performed in which
the perspective was applied to a commercial software product. The energy profile
that was created directed us to the architectural element that was the main driver
behind the EC and through an architectural change we managed to reduce the energy
consumption of DG with 67.1% per generated document. Considering the frequency
at which this task is performed and the number of DG deployments, the savings could
add up significantly from an organizational dimension.

However, we do acknowledge that the presented perspective is by no means as
mature as other perspectives related to QAs. Based on the results presented in this
paper, several directions for future research can be identified. First is to further com-
plete, i.e. by providing problems, pitfalls design patterns, tactics and checklists, and
improve the perspective through practical experience. Second is to investigate how
the work presented in this context can be translated to cloud environments. A final
direction is to investigate, in depth, how insights gained from the architectural per-
spective can be translated to guidelines for software development.

Acknowledgements We would like to thank the DG team for providing us with an interesting case and
help to improve the case study. Also we thank the PhD group on software architecture at Utrecht University
for their feedback and input while executing this research. Furthermore, as this work is an extended version
of a published paper [16], we would like to thank the reviewers for their valuable comments.

References

1. Ardagna, D., Panicucci, B., Trubian, M., Zhang, L.: Energy-aware autonomic resource allocation in
multitier virtualized environments. Services Computing, IEEE Transactions on 5(1), 2–19 (2012)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series in Software Engi-
neering. Pearson Education (2012)

3. Becker, C., Penzenstadler, B., Chitchyan, R., Seyff, N., Duboc, L., Venters, C.C., Easterbrook, S.:
Sustainability design and software: The karlskrona manifesto (2015)

4. Bozzelli, P., Gu, Q., Lago, P.: A systematic literature review on green software metrics. Tech. rep.,
Technical Report: VU University Amsterdam (2013)

5. te Brinke, S., Malakuti, S., Bockisch, C., Bergmans, L., Akşit, M.: A design method for modular
energy-aware software. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pp. 1180–1182. ACM (2013)

6. Cappiello, C., Matera, M., Picozzi, M.: A ui-centric approach for the end-user development of multi-
device mashups. ACM Trans. Web 9(3), 11:1–11:40 (2015). DOI 10.1145/2735632

7. Capra, E., Francalanci, C., Slaughter, S.A.: Is software green? application development environments
and energy efficiency in open source applications. inform software tech 54(1), 60 – 71 (2012)

8. Chasin, F.: Sustainability: Are we all talking about the same thing state-of-the-art and proposals for
an integrative definition of sustainability in information systems. In: ICT for Sustainability 2014
(ICT4S-14). Atlantis Press (2014)

9. Ebert, C., Brinkkemper, S.: Software product management an industry evaluation. Journal of Systems
and Software 95(0), 10 – 18 (2014). DOI http://dx.doi.org/10.1016/j.jss.2013.12.042

10. Ferreira, A.M., Pernici, B.: Managing the complex data center environment: an integrated energy-
aware framework. Computing pp. 1–41 (2014)

20 Erik Jagroep et al.

11. Ferreira, M.A., Hoekstra, E., Merkus, B., Visser, B., Visser, J.: Seflab: A lab for measuring software
energy footprints. In: GREENS, pp. 30–37. IEEE (2013)

12. Grosskop, K., Visser, J.: Identification of application-level energy optimizations. Proceeding of ICT
for Sustainability (ICT4S) pp. 101–107 (2013)

13. Hindle, A.: Green mining: a methodology of relating software change and configuration to power
consumption. Empirical Software Engineering pp. 1–36 (2013). DOI 10.1007/s10664-013-9276-6

14. Ihm, S.Y., Nasridinov, A., Lee, J.H., Park, Y.H.: Efficient duality-based subsequent matching on time-
series data in green computing. The Journal of Supercomputing 69(3), 1039–1053 (2014)

15. Jagroep, E., van der Werf, J.M.E., Jansen, S., Ferreira, M., Visser, J.: Profiling energy profilers. In:
Proc. of the 30th Annual ACM Symposium on Applied Computing, pp. 2198–2203. ACM (2015)

16. Jagroep, E., van der Werf Jan Martijn E. M. Spauwen, R., Blom, L., van Vliet, R., Brinkkemper, S.:
Profiling energy profilers. In: 9th European Conference on Software Architecture (2015)

17. Kalaitzoglou, G., Bruntink, M., Visser, J.: A practical model for evaluating the energy efficiency of
software applications. In: ICT for Sust. 2014 (ICT4S-14). Atlantis Press (2014)

18. Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T.: Green software and green software
engineering–definitions, measurements, and quality aspects. J. on Inf. and Comm. Tech. p. 87 (2013)

19. Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Future Generation
Computer Systems 28(2), 478 – 489 (2012). DOI http://dx.doi.org/10.1016/j.future.2011.05.005

20. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S., Brandic, I., Kertész,
A., Parkin, M., Carro, M.: A survey on service quality description. ACM Comput. Surv. 46(1), 1:1–
1:58 (2013). DOI 10.1145/2522968.2522969

21. Lago, P., Kazman, R., Meyer, N., Morisio, M., Müller, H.A., Paulisch, F., Scanniello, G., Penzen-
stadler, B., Zimmermann, O.: Exploring initial challenges for green software engineering: summary
of the first greens workshop, at icse 2012. ACM SIGSOFT Softw. Engin. Notes 38(1), 31–33 (2013)

22. Lago, P., Kocak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a software quality
property. Commun. ACM p. 9 (2015)

23. Mills, M.P.: The cloud begins with coal: an overview of the electricity used by the global digital
ecosystem. Tech. rep., Digital Power Group (2013)

24. Morales Ruiz, A., Daniels, W., Hughes, D., Grothoff, C.: Cryogenic: Enabling power-aware applica-
tions on linux. In: ICT for Sustainability 2014 (ICT4S-14). Atlantis Press (2014)

25. Murugesan, S.: Harnessing green it: Principles and practices. IT Prof. 10(1), 24–33 (2008)
26. Noureddine, A., Rajan, A.: Optimising energy consumption of design patterns. In: International Con-

ference on Software Engineering (2015)
27. Noureddine, A., Rouvoy, R., Seinturier, L.: A review of energy measurement approaches. ACM

SIGOPS Operating Systems Review 47(3), 42–49 (2013)
28. Noureddine, A., Rouvoy, R., Seinturier, L.: Monitoring energy hotspots in software. Automated Soft-

ware Engineering pp. 1–42 (2015)
29. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: fine grained energy ac-

counting on smartphones with eprof. In: Proc. of the 7th ACM european conf. on Computer Systems,
EuroSys ’12, pp. 29–42. ACM, New York, NY, USA (2012). DOI 10.1145/2168836.2168841

30. Procaccianti, G., Lago, P., Lewis, G.A.: A catalogue of green architectural tactics for the cloud. In:
Maint. and Evol. of Service-Oriented and Cloud-Based Systems (MESOCA), 2014 IEEE 8th Int’l
Symp. on the, pp. 29–36 (2014). DOI 10.1109/MESOCA.2014.12

31. Procaccianti, G., Lago, P., Vetro, A., Fernández, D.M., Wieringa, R.: The green lab: Experimentation
in software energy efficiency. In: Proc. of the 37th Int. Conf. on Software Engineering (ICSE)

32. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakeholders Using View-
points and Perspectives. Addison-Wesley (2011)

33. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engi-
neering. Empirical software engineering 14(2), 131–164 (2009)

34. Steigerwald, B., Agrawal, A.: Green software. Harnessing Green IT: Principles and Practices p. 39
(2012)

35. Sun, Y., Zhao, Y., Song, Y., Yang, Y., Fang, H., Zang, H., Li, Y., Gao, Y.: Green challenges to system
software in data centers. Frontiers of Comp. Sc. in China 5(3), 353–368 (2011)

36. Xu, L., Brinkkemper, S.: Concepts of product software. eur j inform syst 16(5), 531–541 (2007)
37. Zhang, G., Zhang, K., Zhu, X., Chen, M., Xu, C., Shao, Y.: Modeling and analyzing method for cps

software architecture energy consumption. Journal of Software 8(11) (2013)
38. Zhong, B., Feng, M., Lung, C.H.: A green computing based architecture comparison and analysis. In:

Proc. of the 2010 IEEE/ACM Int’l Conf. on Green Computing and Communications & Int’l Conf. on
Cyber, Physical and Social Computing, pp. 386–391. IEEE Computer Society (2010)

39. Zhu, H.S., Lin, C., Liu, Y.D.: A programming model for sustainable software. ICSE (2015)

	Introduction
	Related Work
	Sustainability as a Quality Attribute
	Energy Consumption Perspective on Software Architecture
	Case Study: Applying the Perspective in Practice
	Conclusion

