
A Resource Utilization Score for
Software Energy Consumption

Erik Jagroep, Jan Martijn E. M. van der Werf,
Jordy Broekman, Sjaak Brinkkemper

Utrecht University,
Department of Information and Computing Sciences
Princetonplein 5, 3584 CC Utrecht, The Netherlands

Email: {e.a.jagroep, j.m.e.m.vanderwerf, j.broekman, s.brinkkemper}@uu.nl

Leen Blom, Rob van Vliet
Centric Netherlands B.V.

P.O. Box 338,
2800 AH Gouda, The Netherlands

Email: {leen.blom, rob.van.vliet}@centric.eu

Abstract—Software as the true consumer of power and its
potential contribution to reach sustainability goals is increasingly
being acknowledged. Studies so far have presented successful
results and methods to address the energy consumption of
the software, indicating that different stakeholders striving for
green software have different information needs with respect to
their goals. However, currently there is no uniform manner to
communicate measurements to the different stakeholders such
that key findings are clearly identifiable and easy to understand,
which is likely to hamper green software practices. In this paper
we propose a metric that expresses a score for the resource
utilization, such as power consumption, of a software product.
The metric is designed to be a single score and is flexible to
encompass those aspects that a stakeholder considers relevant
in the context of software energy consumption. The metric was
applied on two applications and allowed for objective comparison
of application configurations and versions. Also the behavior of
these applications across different hardware configurations could
be analyzed. In addition to the metric we investigate means
to visualize measurements which enhances communication and
helped with highlighting the key findings.

Index Terms—Software energy consumption, Resource utiliza-
tion, Visualization, Sustainability.

I. INTRODUCTION

The recent focus on the Energy Consumption (EC) of soft-
ware has had a positive impact on the spectrum of sustainable,
i.e. energy efficient [1], solutions in the ICT sector. Although
hardware consumes energy, software directs the hardware on
using the available resources [2] and numerous studies become
available that report improvements on energy related aspects
with the software itself as the central topic [3], [4]. In a
recent study, Hindle [5] presents a method to analyze EC
across releases of software products, which provides a basis
for sustainable endeavors a software producing organization
[6] might undertake. Despite this, organizations still struggle
with addressing the software products in terms of their EC [7].

Key in this struggle is that addressing the EC of software
confronts a software producing organization, specifically soft-
ware developers, with a multifaceted issue. Depending on
its deployment, measuring the EC of software can be done
using relatively cheap hardware devices. However, apart from
EC measurements, the software is also characterized using
performance measurements which allows for analysis of the

software’s energy consuming behavior and resource usage.
Performance measurements in our case refer to hardware
resource performance and provide insight in how the hardware
components are stressed when processing instructions. Devel-
opers should be able to use this information to address this
relatively unknown, non-functional aspect [8] of the software.

Based on previous work (i.e. [9], [10]), however, we found
that these measurements are not easy to communicate to stake-
holders. Our experience is that in some cases deep knowledge
is required to understand the measurements, i.e. how should a
specific (performance) measurement or metric be interpreted,
and that the key findings that require further investigation are
difficult to identify. Issues that are strengthened by developer
knowledge that is lacking in this area [7]. As a result, we
had developers and software architects searching for the right
information and identified a potential inhibiting factor to start
addressing the EC of the software.

In this paper we investigate a means to effectively com-
municate Software Energy Consumption (SEC) related mea-
surements to stakeholders wanting to address the sustain-
ability of their software. Effectively in our case means that
the information is easy to understand, is reported uniformly
to enhance recognition, and clearly communicates any key
findings. Ideally we are able to express the results in a metric
that allows to objectively compare the software across different
contexts (e.g. releases, installations).

Based on the above we formulate our main research ques-
tion as follows:

RQ: How can we effectively express the resource utilization
for executing a software product in relation to the SEC?

In the RQ, we refer to various resources as it is clear
that energy is not the only involved resource. However, as
this differs per study, a possible metric should be flexible to
encompass those resources that are considered important in
a given context. Translating the focus on resource usage to
a metric, we contribute by providing a Resource Utilization
Score (RUS) for the SEC. The RUS helps in the analysis of
SEC related measurements and their visualization.

The remainder of this paper is structured as follows. We
first present the related work (Sect. II) and continue with



Figure 1. A translation from the language abstraction stack (static) to the energy consumers (dynamic).

the creation of the RUS (Sect. III). After constructing the
score we apply the RUS in an experiment (Sect. IV) and
evaluate the results (Sect. V). Finally, we discuss our findings
(Sect. VI) and provide a conclusion including directions for
future research (Sect. VII).

II. RELATED WORK

The term sustainability in the ICT domain is aimed at
controlling ecological, economical and social dimensions (of
ICT) to the extent that future stakeholders are not compro-
mised in the ability to meet their needs [11]. Sustainable
ICT, also coined ‘Green IT’ [1], helps to improve energy
efficiency, lower greenhouse gas emissions and promotes reuse
and recycling. Recently a technical dimension has been added
for software intensive systems [12], addressing the aspects
of the constantly changing environment in which software is
executed. Our focus on optimizing the EC of software, i.e.
‘green software’ [13], is mainly concerned with the ecological
dimension, however economic, social and technical goals
could also be addressed using a RUS.

A. Addressing Software Sustainability

A popular approach towards creating green software is
to consider sustainability [13], or energy efficiency [14],
[15], as a quality aspect for the software. Doing so allows
software producing organizations to consider sustainability
aspects during the design of the software, i.e. with its software
architecture, and make trade-offs with other quality aspects
(e.g [16]). However, analogous to the other quality attributes
[17], working on software quality could require significant
investments in terms of time, specialized knowledge to address
specific issues and analysis across architectural views [18]. An
EC perspective [9] could help guide any efforts in this regard,
but the complexity of the matter could still pose difficulties.

If we look at the language abstraction stack (Fig. 1), we
can explain the complexity. After a blueprint for the software
is made in the form of its software architecture [8], the actual
software development can take place. Through several layers
of abstraction an instruction set is acquired that is executed by
the hardware. This brings us from the static to the dynamic
aspect of software. Performing the sequences of instructions
affects the hardware components and available (virtualized)
resources, which in turn determines the EC induced by the
software. Hence, as developers have limited control over the

instruction set, they can only await what effect changes in the
source code might have. Some tools are available though, e.g.
Big-O notation [19], but again complexity issues rise due to
the large software systems that organizations produce.

To exert control, apart from EC measurements, studies
in the area of green software report a variety of metrics
depending on the context in which a study was performed and
the stakeholders that are involved. For example, performance
[9], [20] and software [5] metrics are used to characterize
a software product, which is typically input for developers
and architects. These two stakeholders could also benefit from
knowing the EC on process level [4]. As the developer is
responsible for writing the code, these insights could stimulate
to, for example, minimize the number of invocations for a
specific, high energy consuming method.

On the other hand we find metrics on infrastructure and
organizational level, that are useful for higher level sus-
tainability goals (e.g. by product management [21]). Green
performance indicators [22] can, among others, be used to
monitor infrastructure facilities and are of interest when EC
needs to be considered on datacenter level. In their work,
Lundfall et al. [23] present a tool to make the economic impact
of green practices explicit with the purpose of justifying
green practices on management level. The relation with green
software is apparent though as the figures often still stem from
low level computing and application measurements.

B. Resource Utilization

Attributing the EC to the software itself requires monitoring
the usage of the available hardware resource; i.e. performance
measurements. Performance measurements provide insight in
how the hardware components are stressed when processing
instructions and specific performance metrics can be identified
for each individual component [9]. For example, [24] monitors
the overall system throughput, CPU, memory and hard disk
through the ‘number of instructions’, ‘CPU utilization’, ‘mem-
ory utilization’, and ‘disk transactions per second’ perfor-
mance metrics. A different approach is to assume theoretical
EC figures, e.g. based on the specifications provided by the
manufacturer [25], however this approach fails to account for
the dynamic behavior of the software.

Important in this field of research is to select the relevant
hardware components to monitor and the right instructions
to process. Traditionally the CPU has been identified as the



most decisive component for the EC by a system [26], [27].
However, CPU based energy models do not capture all the
power drawn by a system [28]. In [29] the contribution of
each laptop component to the energy consumed is identified,
e.g. the optical drive and LCD-backlight, and shows only 20%
can be attributed to the CPU. On the other hand, in large-scale
infrastructures the EC of network equipment is argued not to
fluctuate heavily with increased traffic [30]. With regard to the
instructions to process, a workload model should be made to
reflect realistic conditions [24].

Resource monitoring is relevant on different levels related to
green software. While investigating the EC of a server, a static
and dynamic component can be identified [28]; static is the
EC while the system is idle, i.e. minimum resources are used,
and the dynamic EC fluctuates with the usage of the resources.
As the static component is a large part of the EC, minimizing
the absolute number of physical servers could significantly
contribute to achieving the desired EC savings. In a cloud
architecture the load of resources can be monitored (CPU, disk
storage and network interface) and nodes switched on or off to
minimize the overall power consumption [27]. This potential
to scale up or down, based on performance monitoring, could
help in achieving cost-effective scalability [31]. The dynamic
part is relevant for green software practices and is determined
by the resource utilization of the software.

C. Labeling Software Products

In [32] work has been done towards creating eco-labels
for software in terms of a definition, criteria, form of rep-
resentation, target groups and stakeholders. Sustainability is
considered in the broadest sense of the word and, for example,
also includes the sustainability aspects of the development
process for the software. Following the main criteria that are
identified, Kern et al. [32] continue with selecting those criteria
that should be considered based on the life cycle phase of the
software. This selection appears to be in line with the metrics
and information needs as discussed above.

We deviate from [32] with respect to the form of representa-
tion. The authors build on international examples of eco-labels,
although valuable in their own rights, which often do not allow
for many details (i.e. low-level metrics) and are solely focused
on specific aspects (e.g. CO2 emissions). Consequently, apart
from providing a starting point, the suggested eco-labels would
be of limited practical value for those wanting to address the
sustainability of their software.

Having said this, we consider the RUS and the eco-labels
complementary in the area of green software. Eco-labels could
help in selecting the tools, frameworks and services that
positively impact the EC of a software product. For example
as a criterion for the service-adaptation tactic [33] in a cloud
context. The RUS, on the other hand, could serve as a more
hands-on tool for software developers and architects.

III. RESOURCE UTILIZATION SCORE

In the search to determine a RUS for software EC, we
investigate a means to combine performance metrics into a

Figure 2. An example of a radar chart with example profile.

single score. However, we also acknowledge the importance
of clearly communicating any key findings and the importance
of lowering the threshold to interpreting the measurements
through its presentation. To this end, we include a means to
visualize measurements in our investigation.

A. Visualizing Measurements

In general visualizing a measurement, e.g. per software
element [4], simplifies its communication and interpretation
compared to raw measurements. However, visualizing mea-
surements individually limits the user in combining metrics
and neglects any relation between them. In the case of SEC,
the hardware components receive instructions from some in-
struction set translated from the software. As such there is
bound to be a relation between the instructions that the compo-
nents have to process. Consequently, we aim for a visualization
method that is able to encompass all measurements in one
figure and can serve as a basis for determining a score.

For our purposes we found a solution in the radar chart.
According to Schutz, Speckesser and Schmid [34] the radar
chart serves four goals:

1) Visualize interrelated performance measures through
standardized scales.

2) Produce an effective description of selected performance
dimensions in one synthetic indicator.

3) Analyze the change in overall performance between two
points in time by comparing the surface of the same
object.

4) Compare different objects through the shape of the
surface for these objects.

Translating these goals to our context we can use a radar
chart to visualize the performance dimensions related to the
SEC, combine the dimensions into one single indicator (i.e. a
score), analyze changes on different points in time (e.g. across
releases [10]) and compare software products to one another.
Under the condition that the same metrics are used for the
chart. An example of the radar chart is provided in Fig. 2,



showing the dimensions (P1 through P6) for an unspecified
object and the forthcoming surface (grey area) resulting from
the scores on these dimensions.

In [35] the idea of the radar chart is applied to benchmark
the performance of national labor markets. Although the
results look promising, limitations of using the surface of the
radar chart are also identified:

• The right dimensions should be selected for benchmark-
ing a specific aspect.

• The right metrics should be selected to characterize these
dimensions.

• The dimensions could contribute differently to an indica-
tor (score) and as such could require a weighted inclusion.

The first two limitations concern selecting the right dimen-
sions, i.e. axes, and the right performance metrics to charac-
terize these axes. We address these limitations for our research
in Sect. III-B. The third limitation affects the calculation of
the RUS and is addressed in Sect. III-D.

B. Determining the Axes
It should be clear that the aspect under investigation in

our research is the SEC. The first step is to determine the
dimensions, i.e. the axes, that will form the radar chart for
this aspect. From the related work we are able to distill the
following dimensions that are directly or indirectly affected
by the instruction set:

• CPU
• Memory
• Hard disk
• Network
• Power consumption
• Execution time

Each dimension has its own performance metrics (e.g. %
usage versus bytes total per second [10]) and each metric is
expressed in its own unit and scale (e.g. utilization percentage
versus number of (M)Bytes). Selecting the dimensions and
corresponding metrics should be done for each individual case
as this depends on the product under study. Note that the
dimensions are not orthogonal, e.g. higher resource utilization
results in increased power consumption.

Following the first goal presented for the radar chart, we
should aim for a standardized means to present the measure-
ments. Looking at the diversity of the list, one of the few op-
tions to determine a standardized score on each dimension is to
use ranges. With regard to resource usage, a minimum resource
usage can be determined in the situation where the hardware
is idle and a maximum where the hardware is stressed to
its maximum capacity [36]. The available resource, i.e. the
margin between the minimum and maximum resource usage,
forms the range. Note that the range should be determined
individually for each performance metric. When an activity is
performed using the software, the required resources can be
divided by the range. This transforms measurements to a value
between ‘zero’ and ‘one’ for that specific metric.

There is however a downside to working with ranges, as not
every aspect can be expressed using a range. The execution

time, for example, could have an infinite maximum, i.e. run as
long as required without limitations. As such, we suggest to
exclude these aspects from the chart itself and instead report
these separately. For example, the units of work [15] to create a
workload model are described separately to correctly interpret
the measurements and the context in which they were found.
We continue our work using the range method.

A final aspect is the order in which the axes are included in
the radar chart. Using the same data in a different order can
result in a difference of up to 300% [35], posing a threat to the
third and fourth goal identified with the radar chart. We take
this issue into account in the next section where we calculate
a score for SEC.

C. Calculating the RUS

Continuing on the path of the radar chart, following goal
three, we are able to obtain an objective performance measure
by calculating the surface of the chart. This calculation is
described by Mosley and Mayer [35] as the Surface Measure
of Overall Performance (SMOP) and is calculated using Eq. 1.

SMOP = ((P1 · P2) + . . .+ (Pn · P1)) · sin(
π

n
) (1)

In the equation, the P-values represent the axes of the radar
chart. The resulting number represents the surface of the figure
created by all of the connected dots on the chart, i.e. the grey
surface in Fig. 2.

The problem with Eq. 1 is that the axes are ordered
implicitly. As there is no clear order between the different mea-
sures the axes represented, ordering them differently results in
different values for the surface. As we do not have an explicit,
clear order for the measures, a solution is sought by calculating
the average surface based on all possible surfaces. Rephrased,
we consider all possible relations between the axes. Instead of
calculating for each possible order the corresponding surface,
we observe that each possible triangle of axes is taken into
account an equal number of times. Hence, calculating the
surface for all different triangle suffices. Translating this to
an equation results in Eq. 2:

SMOP = sin(
π

n
)(

n∑
i=1

n∑
j=1

(Pi · Pj)) (2)

Observe that each score is multiplied by a constant factor.
As we want to use the score for comparing different solutions,
this constant can be left out. However, in its current form we
see that axes could be paired with themselves, and that all
pairs are counted twice (i.e. the symmetrical pairs Pi ·Pj and
Pj ·Pi). Taking these elements into account, the equation can
be simplified as follows:

RUS =

n∑
i=1

n∑
i<j

(Pi · Pj) (3)

A side effect of excluding the constant factor is that we do
not longer calculate the surface of the chart, but rather a score



based on the relation between the axes. As a result we are able
to include non-standardized dimensions (e.g. execution time)
in the equation that are not included in the radar chart. We
labeled the score as the Resource Utilization Score.

D. Weight Factor

With the axes for benchmarking SEC identified and the
ability to calculate a score, one important limitation remains
that should be addressed: weighting the contribution of the
different indicators. In our case this limitation counts for the
performance metrics, but extends to the level of dimensions
(i.e. axes). Concerning the first, we can only argue that the
right performance metrics should be used to determine the
scores on the respective axes. A hard disk, for example, could
be characterized using the ‘Disk I/O per second’ and the ‘#
Mb per second’ metrics [9].

With regard to the axes we acknowledge that some com-
binations could be considered more important than others
and have a bigger influence on EC [37] depending on the
context. In large scale infrastructures, for example, memory
plays an important role. As such, specific combinations that
include memory could be argued have a greater contribution
to the RUS. As these combinations are context dependent, we
introduce a weight to the different ax-combinations, which
results in the following score:

RUS =

n∑
i=1

n∑
i<j

Wi,j(Pi · Pj) (4)

This score (Eq. 4) provides us with the RUS to characterize
the resource utilization in relation to SEC. The weight factor
can be used to reduce or amplify the effect of certain com-
binations of measures. In-depth analysis of the performance
data, for example through a regression model [10], can help
in determining the weight factors.

IV. EXPERIMENT DESIGN

To evaluate the RUS, an experiment was performed to select
the most resource efficient algorithm to calculate the first
N decimals of π from an application that provides many
algorithms to calculate π. Additionally, as a more practical
evaluation, we apply the RUS to an already available dataset
[9]. In this section we describe the setup of the experiment
for which we followed the guidelines provided in [38]–[40].

A. Experiment environment

For our experiment a test environment was prepared con-
sisting of an application system, a logging system, and a
measurement device (Fig. 3). The application system is the
test hardware on which the software product is to be installed
and as such the system to monitor. The logging system collects
data from multiple sources and provides task instructions to
the application system. Finally, the measurement device, a
WattsUp? Pro (WUP)1, is used to measure the power drawn
by the application system and calculate the SEC. Since the

1https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0

Figure 3. Experiment setup

WUP is a separate device, the energy usage of the application
system was not influenced by its measurements.

In total three different application systems were included in
the experiment, a laptop, desktop and a server, each represent-
ing a different computer class. For a system to be included in
the experiment the device had to run the Microsoft Windows 7
Professional (or higher) operating system and be equipped
with a multi-core Intel processor. These requirements provided
us with systems that are capable of remote performance
monitoring and are representative for modern systems in terms
of computational capabilities. Details of the selected systems
are shown in Table I.

Performance measurements were collected using the Win-
dows Performance Monitor2 (Perfmon). Perfmon enables re-
mote performance monitoring of systems with a one second
interval in between measurements and is freely available with
the Windows operating system.

B. Test Application

To simulate activity, we used Systester (version 1.5.1)3; an
application that calculates Pi decimals using the The Quadratic
Convergence of Borwein and Gauss-Legendre algorithms. For
the first algorithm both a single- and multi-core variant was
available This enabled us to not only compare the difference
between the two algorithms, but also between a single- and
multi-core configuration. In order to have controllable runs the
choice was made to calculate 8 · 106 Pi decimals per run.

For the actual experiment the remotely executable command
line version of Systester was used, i.e. from a batch script using
the logging system. In addition, a modified version of Systester
was compiled where the application waits five seconds after
initiating and before ending the process. The presence of this
five second interval allowed Perfmon to collect all data related
to a task and made it easier to identify the specific runs during
processing, thereby directly contributing to the quality of the
data and forthcoming analysis.

C. Metrics and Utilization Ranges

Visualizing measurements on a radar chart requires the
metrics to be expressed on a standardized scale. To do so,
we require the minimum (zero) and maximum (one) resource
utilization figures which allows us to express measurements as
a value on this continuum. The idle measurements (minimum)

2https://technet.microsoft.com/en-us/library/cc749154.aspx
3http://systester.sourceforge.net/



Table I
SPECIFICATIONS OF THE APPLICATION SYSTEMS.

System
Property Laptop Desktop Server
Brand/model ASUS F3JA Custom PC HP DL380 G5
Processor Core 2 Duo T7200 Core 2 Duo E6750 Intel Xeon E5335
FSB / TDP 667 / 34 1333 / 65 1333 / 80
Chipset Intel i945PM Intel P35 Intel 5000P
Memory 2GB DDR2 2GB DDR2 4GB EDO
Operating
System

Windows 7 Professional
(32 bit) Servicepack 2

Windows 7 Professional
(32 bit) Servicepack 2

Windows server 2008 (64
bit) Servicepack 1

were performed by leaving the application systems idle (with-
out going to a sleep state) for at least 30 hours and monitoring
the resource utilization and power consumption during this
period. To determine the maximum resource utilization fig-
ures the application systems were stressed to their maximum
capacities using HeavyLoad4.

Based on the characteristics of Systester, the following
metrics were selected to create a radar chart:

• CPU: ‘% CPU time’. The maximum utilization is 100%
per core adding up to a percentage above 100% for multi-
core systems. The range was determined with the ‘% CPU
time’ while idle and using HeavyLoad.

• Memory: ‘Available bytes’. The number of bytes that
is available of which the value decreases as processes
require memory. The maximum is the available bytes
while idle which also indicates the range for this metric.

• Disk: ‘% disk idle time’. The time that the disk was idle.
The maximum utilization for the hard disk is 100% and
its range is found by subtracting the ‘% idle time’ of
an idle system from this 100%. While the ‘% disk time’
metric can also be used, this metric exaggerates5 disk
utilization.

• Power consumption: The ‘power consumption’ (in Watt)
by the system while performing a run. The range was
determined per system by measuring the ‘power con-
sumption’ while idle and while using HeavyLoad.

Given the nature of the application we decided to exclude
network metrics. Note that the actual SEC is calculated using
the WUP measurements and stems from a different source than
the performance measurements.

To calculate the RUS, the standardized metrics of the radar
chart will be combined with the non-standardized ‘execution
time’ metric. The ‘execution time’ is defined as the time
required to perform a specific task and could be a determining
aspect for SEC [9]. In our experiment the execution time is
the time for Systester to calculate 8 · 106 Pi decimals.

D. Experiment protocol

To actually perform the experiment a protocol was followed
containing every activity required to perform a series of runs.
A run is one time for the application to calculate 8 · 106 Pi
decimals plus the five seconds before and after performing

4http://www.jam-software.com/heavyload/
5https://technet.microsoft.com/en-us/library/cc938959.aspx

this task. A series can be configured to include multiple runs.
For each series a script was used, PiBatch, which automates
monitoring with PerfMon, optionally includes rebooting the
system, and performs a specified number of runs. The script
minimizes human interference, provided that the following
preparations are made:

• Install PsTools6 for executing commands remotely.
• Install software to remotely manage the WUP.
• Remove the battery from the laptop to eliminate battery

charging/discharging effects.
• Configure Windows power settings and disable unneces-

sary services (e.g. Windows Search and Update).
• Configure Perfmon data collector set.
Additionally, the effect of rebooting the application systems

was investigated. In a small experiment we found that a system
was ‘unpredictable’, i.e. random active processes, in the first
15 minutes after rebooting. The PiBatch script takes this into
account by waiting at least 15 minutes before starting the first
run of a series. This resulted in the following protocol:

• Clear WUP meter data and test connections.
• Configure and initiate PiBatch script .
• Collect data from PerfMon and WUP.

At the time of the experiment, rebooting was made optional
in the script as rebooting the server appeared not possible
with a virtual machine running. The virtual machine was
running on one single, dedicated server and was isolated from
other infrastructural facilities ensuring that the only hardware
that is affected is the hardware being measured. To get a
representative data set, we decided to continue until at least
thirty clean measurements per combination were obtained.

E. Post-processing the Measurements

After performing a series of runs, post-processing was
required before analyzing the data.

Determine run execution time; The runs appeared of
variable length and hence we needed to determine the exact
execution time for each run using the ‘%CPU Time’ of the
application process (provided by PerfMon). The execution
interval started when the ‘%CPU Time’ was more than zero
and ended when it went back to zero again.

Synchronize WUP and Perfmon timestamps; Since the
WUP and PerfMon data stemmed from separate sources, the

6https://technet.microsoft.com/en-us/sysinternals/bb896649.aspx/



Table II
THE RUS FOR EACH COMBINATION (LOWER IS BETTER).

Laptop Desktop Server
Borwein, single-core 393.44 421.15 354.57
Borwein, multi-core 358.87 405.73 377.52

Gauss-Legendre 158.53 194.56 147.74

timestamps of the measurements required synchronization.
The start of an interval in the WUP measurements, i.e. an
increase in power drawn, was matched to the moment of
initiation of the associated processes in the PerfMon data.
Cross-checking on corresponding end points ensured that the
synchronization was correct.

Assess quality of runs; Despite our efforts to control
any effects that could influence the experiment, we observed
activity unrelated to Systester during the experiment. First, we
used the ‘% CPU time’ on process level to check whether a
system was solely processing tasks related to Systester during
a run. In addition we monitored the EC for discrepancies as the
performance measurements could not always explain increases
in power consumption. Runs including showing odd patterns
were excluded from further processing.

V. EVALUATING THE RUS
The results of the experiment are summarized in Fig. 4

which shows the radar charts for each combination of the three
systems and Systester options. The charts show the average
score on each metric for the specific configuration, e.g. the lap-
top on average used 69% of the available CPU resources with
the multi-core quadratic convergence of Borwein. In total 32
runs were performed for each algorithm on the laptop, which
were are all clean. On the desktop 34 runs were performed
with the Gauss-Legendre algorithm and 32 runs with both
Borwein algorithms, providing 31 clean runs per algorithm.
The server appeared the most problematic system where we
performed 80, 72 and 55 runs for the Gauss-Legendre, single-
core and multi-core Borwein algorithms to obtain 42, 42 and
55 clean runs respectively. Given the instability, we decided
to obtain at least 40 clean runs for the server.

Since the execution time was not suitable to express on an
axis, we provided this information alongside the corresponding
radar chart. At a glance we can conclude that the Gauss-
Legendre algorithm is the fastest option of the three, and
that the multi-core variant of the Borwein algorithm is faster
than its single-core variant. Surprisingly we find that the
server, despite its computational capacity, on average is at least
30 seconds slower compared to the other systems with the
Gauss-Legendre algorithm. A trend that also shows with the
other algorithms. We were not able to find the cause of this
discrepancy, but we argue these figures could be typical for
the server and associated hardware possibly in combination
with the multi-core capabilities of Systester itself.

The impact of the execution time can be made clear using
the actual SEC figures (Tbl. III) on the account of Systester.
Although the metrics indicate a fairly similar resource utiliza-
tion pattern across machines, in terms of absolute SEC we

Table III
EC CONSUMPTION FIGURES FOR EACH COMBINATION IN JOULE.

Laptop Desktop Server
Borwein, single-core 17,989 26,092 103,165
Borwein, multi-core 14,724 20,555 82,204

Gauss-Legendre 7,442 10,891 44,870

find that the server consumes more energy. The same holds
for the desktop compared to the laptop; similar scores, higher
SEC by the desktop in absolute terms. If we consider the SEC
findings in light of the radar charts we solidify the argument
on adding the execution time to the visualization.

Looking at the dimensions themselves we find that in this
particular case there seems to be a relation between the scores
on the CPU and power dimensions, i.e. an increase on the CPU
dimension pairs with an increase on the power dimension.
Also, as expected, the CPU scores are highest with the multi-
core Borwein algorithm, but do not double in comparison to
the single-core version. The difference between the Borwein
measurements could be an indication of the potential for multi-
core (i.e. multi-threaded) applications.

With regard to the memory and disk metrics, the laptop
and server charts indicate minimal impact on the memory and
disk dimensions. However, the radar charts clearly indicate
a different situation for the disk utilization by the desktop.
While we find the high disk utilization for the desktop peculiar,
we cannot attribute this utilization to Systester as the other
systems do no exhibit this behavior. Based on the information
a further analysis can be performed on the desktop.

A. RUS Scores

The corresponding RUS for each combination is provided in
Tbl. II. The RUS was calculated using the standardized scores
of the performance metrics and the execution time in seconds
(non-standardized). Hence, the scores are larger than ‘one’. As
there were no indications to prefer a specific dimension over
the others we set the weight factor for all pairs of dimensions
to ‘one’. Important to notice is that a lower score means that a
specific combination scores better; i.e. requires less resources.

Comparing the RUS with the EC figures (Tbl. III) we
find that in general lower RUS scores are accompanied by
lower EC figures. The only exception is with the single-
and multi-core Borwein algorithms on the server. Looking
at the radar charts we find that the multi-core variant shows
higher utilization scores on the power and CPU dimension, an
increase that is also visible on the other systems. In relation
to the other systems we can only conclude that the difference
in execution time is enough to offset the EC figures but not
the RUS. From a practical perspective, the single-core variant
could be preferred above the multi-core variant when trade-
offs should be made (e.g. when resources are shared).

If we solely use the RUS scores to choose an algorithm and
platform, the decision would be to run the Gauss-Legendre
algorithm on the server. However, based on the EC we should
actually prefer this algorithm on the laptop or, if we favor
speed, on the desktop. This observation learns that the RUS



Figure 4. The collection of radar charts showing the resource utilization on each dimension and execution time for the nine investigated combinations.

should be considered complementary to the EC and that we
cannot use the RUS to compare across classes of systems.

B. RUS for a Commercial Software Product

As an additional evaluation we applied the theory to a
commercial software product (Document Generator) with the
instructions to generate 5000 documents [9]. The metrics for
the radar chart were ‘% CPU time’ (CPU), ‘available MBytes’
(memory), ‘% disk idle time’ (hard disk), ‘power consumption’
(in Watt) and the ‘total Bytes per second’ (network). Compared
to Systester the network metric was included and and its range
was determined using Lan Speed Test7.

In this case an architectural change was applied to make
Document Generator multi-threaded. The resulting decrease
in CPU Utilization, i.e. from 49% to 19.2%, lowered the EC
per document with 67.1% This finding is visible in the radar
charts (Fig. 5) where a decrease in the the CPU and power
utilization can be observed. A minimal increase in utilization
of the disk and memory was found, whereas the network

7http://totusoft.com/lanspeed/

utilization remains unchanged. Especially the CPU utilization,
or more specifically the division of the workload between CPU
cores [9], seems decisive for the power dimension.

The RUS scores (Tbl. IV) were calculated using the execu-
tion time and appear to be in line with the EC measurements;
i.e. a lower score means less SEC. This finding possibly sug-
gests that the utilization patterns after adjusting the software
are more ‘natural’ to the system.

VI. DISCUSSION

In this research we investigated the possibility for a RUS
to express resource utilization in relation to the SEC. The
constructed score is based on those dimensions that are
deemed relevant for the software and is flexible to be adjusted
depending on the product and the environment in which it
will be executed. Initial evaluation showed promising results
to engage in green software practices. There are, however,
several limitation to our work which we discuss below.

Hardware dependency; Like EC, the RUS is dependent on
the hardware that the software is executed on. Although the
measurements are standardized, the ranges themselves showed



Figure 5. The radar charts for the Document Generator software product
before (left) and after (right) making the software multi-threaded [9].

considerable differences across systems. Comparing the RUS
and EC figures led to the insight that the RUS cannot be
used to compare a software product across classes of systems.
Additionally, it can be impossible to determine the ranges
in environments with ‘unlimited’ resources (e.g. cloud data
centers). Different benchmarks should be found when this is
the case, for example benchmark release of software to one
another to visualize the effect of software changes.

Visualization; The RUS is based on the theory related
to the radar chart. Even though we investigated different
theories, other options could exist that better fit the purpose.
For example, theories that better consider the relation between
dimensions or express a score based on the dimensions.

Robustness; The RUS was successfully applied to both a
synthetic (Systester) and commercial (Document Generator)
application, which shows the generic ability of the theory to
be applied. Although we are confident in the validity of our
results, more applications of RUS are required to prove or
disprove the robustness of the RUS.

Weight factor; The weight factor for calculating the RUS
is a topic that still requires further investigation. In our
experiment we could not motivate a higher score on one
combination of dimensions over the other and decided to set
the weight factor to ‘1’ for each combination. However, other
situations might require a thorough investigation to determine
the correct weight factors.

A. Experiment Limitations

Despite our best efforts, there are limitations to the experi-
ment as described:

Windows processes; Thirty minutes after rebooting we
observed an increase in activity for an unspecified period of
time. The cause is unknown, but we assume that Windows-
related processes are triggered by a timed mechanism which
we cannot control. However, we did not find significant
differences between runs executed after twenty or 200 minutes
and between Windows 7 and Windows Server 2008.

Measurement interval; WUP and Perfmon perform mea-
surements with a one second interval, while computers process
millions of instructions per second. Although we argue our
measurements are sufficient for our purposes, we acknowledge
the fact that data is lost with the instruments at hand.

Table IV
THE EC (IN JOULE) AND RUS FOR THE DOCUMENT GENERATOR

SOFTWARE PRODUCT BEFORE AND AFTER CHANGING THE SOFTWARE.

EC RUS
Single-threaded 17,560 2,313.09
Multi-threaded 5,782 1,644.49

Room temperature; Of the three systems the server was
the only one situated in a climate-controlled data center and as
a consequence we can only guarantee identical conditions for
this system. Although we tried to maintain consistency, we
acknowledge the fact that, among others, room temperature
could have influenced our measurements. We consider the
insignificant differences found between measurements as a
confirmation that the influence in our experiment was limited.

VII. CONCLUSION

In this paper we propose a metric to effectively communi-
cate resource utilization measurements for a software product
in relation to EC. The metric should be easy to understand,
reported uniformly and clearly communicate key findings. We
consider the viewpoints of multiple stakeholders wanting to
address the sustainability of their software product through
green software practices, and posed the following research
question: ‘How can we effectively express the resource uti-
lization for executing a software product in relation to the
SEC?’. We provide an answer by constructing the RUS.

Following the goals of the of radar chart, the RUS delivers
a single score based on selected dimensions and performance
metrics. To calculate the RUS, the equation to calculate the
surface of a radar chart was transformed into one that considers
the relation between dimensions. A weight factor is added
that enables stakeholders to determine the importance of each
pair of dimensions. As the measurements can be expressed
on a standardized scale they can be interpreted more easily,
do not require knowledge on the individual metrics and can
be compared between software applications. Additionally, the
radar chart provides a means to visualize the measurements
which helps to identify key findings.

Evaluating the RUS with two different datasets, showed that
the RUS should be considered complementary to the EC and
the execution time related to a software product. In general
a lower RUS corresponds to a lower EC consumption figure,
but with the server a case was also found where a lower RUS
was accompanied by a higher EC. In these situations a trade-
off should be made, like with quality attributes, favoring the
aspect that is considered more important in a specific context.
A limitation of the RUS found in its inability to be compared
across systems of different classes.

Based on the work presented in this paper, we identify
several direction for future research. First is to investigate
the RUS more thoroughly. For example, the RUS could be
used to compare between systems within the same class.
Also a (standardized) means to determine the weight factor
could aid in the RUS’ acceptance. A second direction is to
investigate the positioning of the RUS in relation to more



the generic eco-labels for the ICT domain. A final direction
is to use RUS to create awareness on green software during
the development process. By showing the impact of software
development activities, software developers are enabled to
address sustainability issues that might arise.

ACKNOWLEDGMENT

We would like to thank Fabiano Dalpiaz and Garm Lucassen
and the reviewers of ICT4S for their valuable feedback to
improve the paper.

REFERENCES

[1] S. Murugesan, “Harnessing green it: Principles and practices,” IT Pro-
fessional, vol. 10, no. 1, pp. 24–33, Jan 2008.

[2] Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang, Y. Li, and
Y. Gao, “Green challenges to system software in data centers,” Frontiers
of Computer Science in China, vol. 5, no. 3, pp. 353–368, 2011.

[3] K. Grosskop and J. Visser, “Identification of application-level energy op-
timizations,” in Proceedings of ICT for Sustainability (ICT4S). Atlantis
Press, 2013, pp. 101–107.

[4] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engineering, pp. 1–42, 2015.

[5] A. Hindle, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software Engineer-
ing, pp. 1–36, 2013.

[6] S. Jansen, S. Brinkkemper, J. Souer, and L. Luinenburg, “Shades of gray:
Opening up a software producing organization with the open software
enterprise model,” Journal of Systems and Software, vol. 85, no. 7, pp.
1495–1510, 2012.

[7] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-
mers know about the energy consumption of software?” PeerJ PrePrints,
vol. 3, p. e1094, 2015.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI Series in Software Engineering. Pearson Education, 2012.

[9] E. A. Jagroep, J. M. E. M. van der Werf, R. Spauwen, L. Blom, R. van
Vliet, and S. Brinkkemper, “An energy consumption perspective on
software architecture,” in Software Architecture, ser. LNCS, no. 9278.
Springer, 2015, pp. 239–247.

[10] E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti,
P. Lago, L. Blom, and R. van Vliet, “Software energy profiling:
Comparing releases of a software product,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 523–532.

[11] F. Chasin, “Sustainability: Are we all talking about the same thing state-
of-the-art and proposals for an integrative definition of sustainability in
information systems,” in Proceeding of ICT for Sustainability (ICT4S).
Atlantis Press, 2014, pp. 342–351.

[12] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing
sustainability as a property of software quality,” Commun. ACM, vol. 58,
no. 10, pp. 70–78, sep 2015.

[13] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, F. Paulisch,
G. Scanniello, B. Penzenstadler, and O. Zimmermann, “Exploring ini-
tial challenges for green software engineering: summary of the first
GREENS workshop, at ICSE 2012,” ACM SIGSOFT Software Engi-
neering Notes, vol. 38, no. 1, pp. 31–33, 2013.

[14] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics
for the cloud,” in Software Architecture (WICSA), 2014 IEEE/IFIP
Conference on, April 2014, pp. 41–44.

[15] G. Kalaitzoglou, M. Bruntink, and J. Visser, “A practical model for eval-
uating the energy efficiency of software applications,” in Proceedings of
ICT for Sustainability (ICT4S-14). Atlantis Press, 2014.

[16] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J.
Halfond, and J. Clause, “How does code obfuscation impact energy
usage?” Journal of Software: Evolution and Process, 2016.

[17] ISO, “Systems and software engineering – systems and software quality
requirements and evaluation (SQuaRE) – system and software qual-
ity models,” International Organization for Standardization, Geneva,
Switzerland, ISO 2510:2011, 2011.

[18] N. Rozanski and E. Woods, Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives. Addison-Wesley,
2011.

[19] S. Barlowe and A. Scott, “O-charts: Towards an effective toolkit for
teaching time complexity,” in Frontiers in Education Conference (FIE),
2015. 32614 2015. IEEE, Oct 2015, pp. 1–4.

[20] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, ser. SoCC ’10. New York, NY,
USA: ACM, 2010, pp. 39–50.

[21] C. Ebert and S. Brinkkemper, “Software product management - an
industry evaluation,” Journal of Systems and Software, vol. 95, no. 0,
pp. 10 – 18, 2014.

[22] A. Kipp, T. Jiang, M. Fugini, and I. Salomie, “Layered green perfor-
mance indicators,” Future Generation Computer Systems, vol. 28, no. 2,
pp. 478 – 489, 2012.

[23] K. Lundfall, P. Grosso, P. Lago, and G. Procaccianti, “The green
practitioner: A decision-making tool for green ict,” in Proceedings of
ICT for Sustainability (ICT4S). Atlantis Press, 2015, pp. 74–81.

[24] D. Magalhães, R. N. Calheiros, R. Buyya, and D. G. Gomes, “Workload
modeling for resource usage analysis and simulation in cloud comput-
ing,” Computers & Electrical Engineering, vol. 47, pp. 69–81, 2015.

[25] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s
data centers: a power consumption analysis of tpc-c results,” Proceedings
of the VLDB Endowment, vol. 1, no. 2, pp. 1229–1240, 2008.

[26] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[27] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755 – 768, 2012, special Section: Energy efficiency in large-scale
distributed systems.

[28] R. Koller, A. Verma, and A. Neogi, “WattApp: an application aware
power meter for shared data centers,” in Proceedings of the 7th interna-
tional conference on Autonomic computing. ACM, 2010, pp. 31–40.

[29] P. Somavat, V. Namboodiri et al., “Energy consumption of personal
computing including portable communication devices,” Journal of Green
Engineering, vol. 1, no. 4, pp. 447–475, 2011.

[30] R. Carpa, O. Gluck, L. Lefevre, and J.-C. Mignot, “Improving the energy
efficiency of software-defined backbone networks,” Photonic Network
Communications, vol. 30, no. 3, pp. 337–347, 2015.

[31] J. Espadas, A. Molina, G. Jimnez, M. Molina, R. Ramrez, and D. Con-
cha, “A tenant-based resource allocation model for scaling software-
as-a-service applications over cloud computing infrastructures,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 273 – 286, 2013,
including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures.

[32] E. Kern, M. Dick, S. Naumann, and A. Filler, “Labelling sustainable
software products and websites: Ideas, approaches, and challenges,” in
Proceedings of ICT for Sustainability (ICT4S). Atlantis Press, 2015,
pp. 82–91.

[33] G. Procaccianti, P. Lago, and G. A. Lewis, “A catalogue of green
architectural tactics for the cloud,” in Maint. and Evol. of Service-
Oriented and Cloud-Based Systems (MESOCA), 2014 IEEE 8th Int’l
Symp. on the, Sept 2014, pp. 29–36.

[34] H. Schütz, S. Speckesser, and G. Schmid, “Benchmarking labour
market performance and labour market policies: Theoretical foundations
and applications,” WZB Discussion Paper FS I 98-205, 1998. [Online].
Available: http://hdl.handle.net/10419/43918

[35] H. Mosley and A. Mayer, “Benchmarking national labour market
performance: A radar chart approach,” WZB Discussion Paper FS I
99-202, 1999. [Online]. Available: http://hdl.handle.net/10419/43952

[36] G. Bekaroo, C. Bokhoree, and C. Pattinson, “Power measurement of
computers: analysis of the effectiveness of the software based approach,”
Int. J. Emerg. Technol. Adv. Eng, vol. 4, no. 5, pp. 755–762, 2014.

[37] T. Vogelsang, “Understanding the energy consumption of dynamic ran-
dom access memories,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2010, pp. 363–374.

[38] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer Publishing Company, Incorporated, 2010.

[39] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[40] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

http://hdl.handle.net/10419/43918
http://hdl.handle.net/10419/43952

	Introduction
	Related Work
	Addressing Software Sustainability
	Resource Utilization
	Labeling Software Products

	Resource Utilization Score
	Visualizing Measurements
	Determining the Axes
	Calculating the RUS
	Weight Factor

	Experiment Design
	Experiment environment
	Test Application
	Metrics and Utilization Ranges
	Experiment protocol
	Post-processing the Measurements

	Evaluating the RUS
	RUS Scores
	RUS for a Commercial Software Product

	Discussion
	Experiment Limitations

	Conclusion
	References

