
Profiling Energy Profilers

Erik Jagroep, Jan Martijn E.M.
van der Werf, Slinger Jansen

Utrecht University
Dept. of Information and Computing Sciences

Princetonplein 5
Utrecht, The Netherlands

{e.a.jagroep, j.m.e.m.vanderwerf,
slinger.jansen}@uu.nl

Miguel Ferreira,
Joost Visser

Software Improvement Group B.V.
Amstelplein 1

Amsterdam, The Netherlands
{m.ferreira, j.visser}@sig.eu

ABSTRACT
While energy is directly consumed by hardware, it is the
software that provides the instructions to do so. Energy pro-
filers provide a means to measure the energy consumption
of software, enabling the user to take measures in making
software more sustainable. Although each energy profiler
has access to roughly the same data, the reported measure-
ments can differ significantly between energy profilers. In
this research, energy profilers are evaluated through a series
of experiments on their functionality and the accuracy of the
reported measurements. The results show that there is still
work to be done before these software tools can be safely
used for their intended purpose. As a start, a correction
factor is suggested for the energy profilers.

Keywords
Energy profilers, Accuracy, Sustainable software.

1. INTRODUCTION
The search for more environmental friendly information

technology (IT) has already had an impact on the energy
awareness and energy consumption of the sector [3]. A dis-
tinction is often made between ‘greening by IT’, i.e., using
IT to make other industries more sustainable, and ‘greening
of IT’, the process of making IT itself more sustainable. This
research focuses on the latter, i.e., on sustainable software.
Sustainable software is “software whose direct and indirect
negative impacts on economy, society, human beings, and
the environment resulting from development, deployment,
and usage of the software is minimal and/or has a positive
effect on sustainable development” [9].

Typically, sustainability research focuses on hardware as-
pects, i.e., making the hardware more energy efficient [8].
However, it is the software that determines the use of the
hardware, and can therefore be seen as the true consumer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright is held by the author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695825

of power [13]. In addition, “a single ill-behaving power-
unfriendly software component on the system can thwart
all of the power management benefits built into the hard-
ware” [12].

An energy profiler (EP) is a software tool that estimates
the energy consumption of a system based on the compu-
tational resources used by applications, and by monitoring
the hardware resources [1, 3, 11]. The use of EPs enables
practitioners to investigate the energy consumption behav-
ior of their software without having to invest in specialized
hardware. However, many different EPs exist and each has
its own internal model to estimate the energy consumption.
Although all base themselves on the same set of variables,
their estimations differ. Consequently, reliability, and hence
accuracy, of the estimations is unclear. For example, these
tools interpret variables such as multi-core processors, data
access and memory consumption differently [10].

In this research, we focus on the question: Can energy pro-
filers be used to accurately estimate the energy consumption
of software? In a laboratory environment at the Software
Energy Footprint Laboratory (SEFLab) [5], we performed
experiments with the objective to evaluate the reliabilty of
EPs. In the evaluation we focus on (1) the maturity of the
EPs in terms of operationalization, and (2) on the accuracy
of the reported energy consumption estimations compared
to the actual power consumption.

This paper is structured as follows. In Section 2 we intro-
duce the experiment that was performed with the EPs. The
results of the experiments are presented in Section 3 and
in Section 4 the threats to validity are discussed. Finally
Section 5 concludes the paper and provides suggestions for
future work.

2. EXPERIMENT SETUP
In this research we evaluate the accuracy of EPs by com-

paring the actual energy consumption of the hardware with
the reported outcomes of the EPs under study. To this end,
idle, varying load and full load scenario’s were simulated. In
the idle scenario, the system is in rest. For the variable load
scenario we chose to simulate a representative real usage sce-
nario of the system by inducing a variable load on the CPU
at random intervals using ‘SEFLab-Experiments’ 1. Last,
in the full load scenario, a continuous full load is placed on
the CPU using ‘HeavyLoad’ 2 (Microsoft Windows) and the

1https://github.com/SEFLab/SEFLab-Experiments
2http://www.jam-software.com/heavyload/

https://github.com/SEFLab/SEFLab-Experiments
http://www.jam-software.com/heavyload/

’Stress’ package 3 (Linux), maxing out its capacity.
Per EP 35 runs, of approximately one minute, were simu-

lated per scenario, during which three resources were moni-
tored:

• the output of the EP under study;

• the performance measurements of the system; and

• the real energy consumption of the system, monitored
by the SEFLab.

Although we acknowledge the importance of the other hard-
ware components [7], we only induce CPU load in this ex-
periment, as it has been identified as the main driver for
energy consumption [2, 5, 12].

2.1 Energy profilers
An exploratory search was conducted to identify relevant

EPs for this research. For this search, we formulated the
following requirements to include an EP in our experiment:

• there is at least a ‘beta’ version available online;

• intervals between two measurements are at most one
second;

• it should run on Ubuntu Linux or Microsoft Windows;
and

• it should be compatible with the hardware available in
the SEFLab.

For the exploratory search the Google, Scholar Google and
Bing search engines were used for querying the terms ‘en-
ergy profiler(software)’, ‘software energy profiler’, ‘energy
consumption software’. The term energy was also exchanged
for ‘power’.

Table 1 presents the selected EPs and their main proper-
ties in terms of measurement level and detail. The search
showed a clear difference in capabilities between the found
EPs. EPs that could not be properly installed in the SEFLab
were excluded beforehand from further research.

2.2 Equipment
The experiments were performed on a Dell PowerEdge

SC1425 server, referred to as the “test-server”. To mea-
sure the real energy consumption, we used a Watts Up?
PRO (WUP) power consumption meter, which is a physical
device used to measure the total power consumption of the
test-server directly from the power socket. As some EPs run
on different operating systems, we swapped between identi-
cal hard disks on which Microsoft Windows 7 and Ubuntu
version 12.04 were installed. Further details on the available
hardware can be found in [5].

Ideally, considering the nature of electrical power, we would
have liked for EPs to measure more frequent than once per
second since the equipment in the SEFLab allowed us to
measure more than ten thousand times per second. How-
ever, no EP found in the exploratory search possessed this
ability. Hence the choice was made to only measure with
the WUP, which is accurate to 1.5%.

3http://packages.ubuntu.com/search?keywords=stress

2.3 Experiment protocol
The experiment consists of three scenarios per EP. For

each scenario and EP, we performed the following activities.

Preparation Setup of the test-server, including synchro-
nization of the system clocks using the ‘network time
protocol’ (NTP) and the installation and operational-
ization of the EP under study. Finally, we ensured that
unnecessary applications were closed for clean mea-
surements.

Perform run Execution of the different scenarios using the
‘SEFLab-Experiments’ tool. This tool automatically
records time pulses to indicate the beginning and end
of a run, providing consistency in the duration, and
collecting the data from the different sources.

The tools report the energy consumption in joules per time
unit. As the typical time interval is one second, this equals
to power (W). To calculate the total energy consumed dur-
ing a run, we aggregate these measurements and report in
Watthour (Wh). Throughout this paper the measurements
provided by the EPs are referred to as the reported measure-
ments, whereas the actual measurements are obtained from
the SEFLab, i.e. WUP.

2.4 Reboot vs no reboot
To determine the influence of rebooting the test-server

between runs, a small experiment was performed comparing
five full load runs with reboot to five full load runs without
reboot. Although the runs with reboot reported a higher
average (Mdn = 298.78 W) and energy consumption (Mdn
= 403 Wh) than without reboot (Mdn = 298.28 W and Mdn
= 402 Wh), the difference was not significant (U = 9.00, z
= -0.731, p >.05, r = -.23; for both tests). Measurements
for the scenario without reboot were more stable, i.e., show-
ing less outliers than the scenario with reboots. A possible
explanation is that the initial start-up processes cause these
outliers, resulting in the higher measurements. Therefore,
we decided not to reboot the test-server after each run.

3. RESULTS
The evaluation of an EP consists of (1) operationalization

of the tool, and (2) its accuracy in terms of energy con-
sumption and timeliness. To evaluate the energy consump-
tion, the averages and total energy consumption per run
are compared between actual and reported measurements.
Timeliness considers whether measurements are reported on
the right moment in time, and is done by comparing the en-
ergy consumption graphs of each run (cf. Fig. 1).

3.1 Operation
We first consider the operationalization of the EPs.
Joulemeter is straightforward to install and, after cal-

ibration using the WUP meter, provides a proper dataset
to compare against the actual measurements. Calibration
requires the WUP to be connected to the test-server and
pressing the ’calibrate’ button on the interface of Jouleme-
ter. The interval between measurements is one second; the
results are stored in a comma separated values (CSV) file.

Energy Consumption Tools (EC Tools) is a collec-
tion of tools, including a core library with sensors and power
estimators that can be re-utilized in other programs, a data

http://packages.ubuntu.com/search?keywords=stress

Table 1: Specification of the EPs and the extent in which they are included in this research.
Level Detail

C
a
li
b
ra

ti
o
n

re
q
u
ir

e
d

In
st

a
ll
a
b
le

O
p

e
ra

ti
o
n
a
li
z
a
b
le

Profiler

IT
E

n
v
ir

o
n
m

e
n
t

S
y
st

e
m

A
p
p
li
c
a
ti

o
n

P
ro

c
e
ss

L
in

e
o
f

c
o
d
e

H
a
rd

w
.

d
e
p

e
n
d
e
n
t

S
y
st

e
m

P
ro

c
e
ss

C
P

U

M
e
m

o
ry

H
D

D

N
e
tw

o
rk

B
a
se

Active Energy Manager (W, L) X X ? - -
Computer Power Log (W) X X ? - -
EC Tools (L) X X X X X X
Energy-aware profiler (W) X X X X X ? - -
Eprof (OS unknown) X X X X X X X X - -
ESSaver (W) X X X X X X X X X X -
Hardware Sensors Monitor * (W) X X X X X ? - -
Joulemeter (W) X X X X X X X X X
PowerAPI (W, L) X X X X X - - -
PowerTOP (L) X X X X X -
powometer (W) X Unknown ? - -
pTop (L) X X X X X X -
pTopW (W) X X X X X X -
Sensorsview * (W) X X X X X ? - -
* = voltages only, W = Windows, L = Linux

acquisition tool, a monitoring tool on the level of processes,
and an application power profiler. It provides real-time re-
source usage and power estimations for the running pro-
cesses and is built to allow calibration based on the power
consumption reported by the machine’s Advanced Configu-
ration and Power Interface (ACPI) subsystem or by external
power meters.

Although the installation is straightforward, calibration
is required before EC Tools can be used. Unfortunately,
EC Tools had to be adjusted 4 to work with the WUP de-
vice. Once fully operational EC Tools provides a CSV file
containing the power consumption measurements. The in-
terval between two measurements is one second.

pTop [4] relies on a MySQL database to store data it col-
lects and produces. Despite a successful installation and
calibration, we did not manage to get pTop to produce
any energy estimations. After code inspection we found
that two functions responsible for inserting data in the “pro-
cess energy” and “device energy” tables, named “insert pro-
cess energy”and“insert device energy”, were never called at
in the pTop code base. We have been in contact with the
developer of pTop, but contact was broken and the decision
was made to exclude pTop from further research.

pTopW does not share the same code-base of its Linux
counterpart and is calibrated by providing power charac-
teristics of the hardware (e.g. thermal design power of the
CPU) in a calibration file. Although most hardware charac-
teristics could be obtained via the respective vendors, there
were parameters in the file that we did not understand prop-
erly. Documentation on this matter was lacking and contact
with the developer did not provide the required clarity. Us-
ing a configuration file containing all information that we
could provide at that time, pTopW produced estimations of

4https://github.com/cupertino/ectools/pull/7

50+ kWh for the CPU alone. The inability to calibrate led
to the exclusion of pTopW from further research.

PowerTop is fundamentally different from the other EPs
as it uses an external measurement of the power being drawn
and breaks this down per process using the computational
resource consumption. Since the powermeter that Power-
Top is designed to work with was not available during the
experiment, the source code was adapted to read the power
consumption from the WUP meter 5. Then, conform de-
scribed functionality, PowerTop ran for over half an hour to
collect enough data points to produce estimations. Unfortu-
nately we were not able to get PowerTop to produce energy
consumption estimations and thus excluded the tool from
further research.

One other potential problem we noticed in the source code
of PowerTop, was that the external power sensor was only
called before measurement starts. In the varying load sce-
nario this could mean that that PowerTop will not be able
to properly keep track of variations in power consumption.

ESSaver is composed of a data collection agent, that runs
as a windows service, and a reporting tool, that produces en-
ergy consumption reports based on the collected data. With
the help of the developer, we were able to configure the EP
to work with the SEFLab hardware and perform the exper-
iments. Unfortunately, we were not able to transform the
data collected by ESSaver into valid power estimations.

We can only speculate about the reasons behind this prob-
lem, but one observation is that the agent installed on the
test-server is more mature than the reporting tool. The
agent is installed with just a few clicks of the mouse, whereas
much more configuration is involved for the reporting tool
which was, at that time, not shipped to the users of ESSaver.
As a result, ESSaver was excluded from further research.

5https://github.com/pyrovski/watts-up

https://github.com/cupertino/ectools/pull/7
https://github.com/pyrovski/watts-up

Table 2: Joulemeter example data and correction factor for the varying load scenario.
Run SL (Wh) JM (Wh) Diff. (Wh) SL error (%) JM error (%) JM corr. (Wh) Corr. diff. New error (%)

1 229.925 220.840 9.085 3.95 4.11 232.695 2.770 1.20
2 230.544 217.763 12.780 5.54 5.87 229.453 1.091 0.47
3 253.106 241.310 11.796 4.66 4.89 254.264 1.158 0.46
4 232.446 222.420 10.027 4.31 4.51 234.359 1.913 0.82
5 242.479 227.599 14.881 6.14 6.54 239.816 2.663 1.10

. .
Averages 236.223 224.186 12.037 5.09 5.37 236.221 1.141 0.48

3.2 Accuracy
After first inspection, the accuracy was evaluated of the

EPs that could be made operational Tbl. 1. The Joulemeter
and EC Tools data were tested for normality [6] to determine
the correct tests to apply. For the normally distributed data,
the independent samples t-test is used, whereas the non-
parametric Mann-Whitney U test has been applied for non-
normally distributed data [6].

3.2.1 Joulemeter
Joulemeter provides the richest dataset, containing valid

35 runs for all three scenarios.
Idle: the Joulemeter averages (Mdn = 193 W) are signif-

icantly higher than the SEFLab averages (Mdn = 184 W),
U = 306, z =-3.60, p <.05, r = -0.43. This in contrast to
the energy consumption figures where Joulemeter (Mdn =
181 Wh) reports significantly lower figures than the SEFLab
(Mdn = 182 Wh), U = 393, z = -2.548, p <.05, r = -.30.

Varying load: the averages for Joulemeter (M = 218 W,
SE = .6) are lower than the SEFLab (M = 230 W, SE =
.56). This difference is significant t(68) = 14.27, p <.05 and
represents a large effect size r = .87. Concerning the energy
consumption again Joulemeter (M = 224 Wh, SE = .0012)
reports lower figures than the SEFLab (M = 236 Wh, SE =
.0013). This difference is significant as well t(68) = 6.67,p
<.05 with a medium effect size r = .40.

Full load: For the full load scenario, opposite to the idle
scenario, Joulemeter (Mdn = 316 W) reports significantly
higher averages than the SEFLab (Mdn = 308 W), U =
98, z =-6.043, p <.05, r = -.72. This also holds for the
energy consumption, Joulemeter (Mdn = 330 Wh) compared
to SEFLab (Mdn = 320 Wh), however this difference is not
significant, U = 454, z =-1.862, p >.05, r = -.22.

The results are summarized in Tbl. 3, which shows the sig-
nificant differences from Joulemeter compared to the SEFLab.
Figure 2 visualizes the values of the different scenarios as
boxplots. Surprisingly, the plots show relatively large over-
laps in the idle and varying load. Given the non significant
difference this was only expected for the full load scenario.
Looking at the average differences in absolute terms we find
2 Wh for the idle, 12 Wh for the varying load and 8 Wh full
load scenario.

With regard to the timeliness of Joulemeter, we observe
no significant difference compared to the SEFLab. The fig-
ures (varying load example in Fig. 1) show spikes and ’lows’
at approximately the same moments in time during a run,
enabling users to assign power consumption patterns to spe-
cific activities that are being performed.

3.2.2 Energy Consumption Tools
Unfortunately the EC Tools dataset is less stable com-

pared by Joulemeter, as the tool turned out to not always
produced reliable measurements. For this reason, we ob-

tained 31 for the idle, 33 for the varying load and 34 valid
runs for the full load scenario.

Idle: The figures reported for the idle scenario indicate
that EC Tools (Mdn = 196 W) reports significantly higher
figures than the SEFLab (Mdn = 183 W), U = .00, z =
-6.765, p <.05, r = -.86. This line continues with the energy
consumption where EC Tools (Mdn = 193 Wh) reports sig-
nificantly higher figures than the SEFLab (Mdn = 180 Wh),
U = .00, z = -6.765, p <.05, r = -.86.

Varying load: In the varying load scenario, EC Tools
(Mdn = 215 W) reports significantly lower averages than
the SEFLab (Mdn = 226 W), U = 10, z =-6.855, p <.05, r =
-.84. For the energy consumption the statistics also indicate
that EC Tools (M = 212 Wh, SE = .0004) on average reports
lower figures than the SEFLab (M = 225 Wh, SE = .001)
and again a significant difference is found t(52) = 12.939, p
<.05 that represents a large-sized effect = .76.

Full load: The statistics for the full load scenario show
that EC Tools (Mdn = 282 W) reports significantly lower
averages than the SEFLab (Mdn = 318 W), U = .00, z
= -7.09, p <.05, r = -.86. The same holds for the energy
consumption where EC Tools (M = 278 Wh, SE = .00007)
reports lower figures than the SEFLab (M = 313 Wh, SE
= .0002). This difference is significant t(43.9) = 176.322, p
<.05 and represents a large-sized effect r = 1.0.

Statistics indicate that the EC Tools measurements in all
cases significantly differ from the SEFLab. Looking at the
boxplots presented in Fig. 3, this finding is supported through
the minimal overlap between measurements. In absolute
terms we found an average difference of 11 Wh, 10 Wh and
34 Wh for respectively the idle, varying and full load sce-

Figure 1: Actual (SEFLab), reported (Joulemeter)
and difference in energy consumption over time.

Table 3: EP results compared to the SEFLab.
Joulemeter EC Tools

Avg. Consumption Avg. Consumption
Idle ↑ ↓ ↑ ↑
Varying ↓ ↓ ↓ ↓
High ↑ - ↓ ↓

Figure 2: Joulemeter and SEFLab energy consumption averages per scenario.

Figure 3: EC Tools and SEFLab energy consumption averages per scenario.

nario. An interesting observation is the fact that the idle and
full load measurements are within a dense range of around 3
Wh, which might be caused by the type of operating system.

On the aspect of timeliness, using similar graphs as Fig. 1,
less overlap and in general a lower responsiveness was per-
ceived, though still acceptable. Overall, a doubt remains on
the operationalizability of EC Tools, considering the stabil-
ity issues and large differences found in the experiment.

3.3 Correction factor
Looking at the Joulemeter measurements for the varying

load scenario Tbl. 2, the error between the actual and re-
ported measurements seems to be relatively constant at 5%.
The error percentages presented in this table are calculated
by dividing the difference in energy consumption by respec-
tively the SEFLab and Joulemeter measurements. The cor-
rected figures for Joulemeter are calculated using the average
error percentage for Joulemeter, i.e., 5.37%.

Table 2 shows that after correcting the Joulemeter varying
load measurements with this factor, the average difference
between Joulemeter and the SEFLab becomes 0.48%. Re-
peating these calculations for the varying load scenario of
EC Tools, we find that a correction of 4.98% can be applied
to reduce the average difference to 0.78%. Looking at the
difference in absolute terms, supported by the utmost right
boxplots in Fig. 2 and Fig. 3, we hypothesize that the cor-
rections bring the measurements within acceptable bounds.

After correction Joulemeter (M = 236 Wh, SE = 1.29)
reports the same mean as the SEFLab (M = 236 Wh, SE
= 1.33), and a slightly higher median (see Fig. 2, which is
not significant t(68) = -.001, p > .05 and has no effect size

r = .00. EC Tools (Mdn = 222.2 Wh) also reports a slightly
higher median than the SEFLab (Mdn = 221.8 Wh), and
again this difference is not significant (U = 514, z = -.391,
p>.05, r = .05). Although the initial results are promising,
further research to investigate and determine the correction
factors is required.

4. THREATS TO VALIDITY
The threats to validity are identified according to the four

major classes of validity aspects [14, 15]. Construct valid-
ity covers identifying the correct operational measures for
the concepts being studied. Considering the nature of the
experiments and the measurements that were obtained, we
ensured that there is no room for ambiguity in interpreting
the results.

In the light of the internal validity, it cannot be 100%
certain that the only load generated on the test-server was
caused by the tools used for experimentation. Although all
unnecessary applications were closed, the behavior of ser-
vices can not be completely controlled. To exclude the in-
fluence of (start-up) services as much as possible, the choice
was made not to reboot the server between runs. In or-
der to control environmental conditions that could influence
the experiment, e.g. room temperature, the test-server was
situated in a former server room.

For the external validity we argue that the installation
and configuration difficulties will be experienced by anyone
wanting to use a specific EP. However, although the mea-
surements themselves are not questioned, the availability or
lack of specific hardware might have enabled or inhibited us
to get an EP operational. Different hardware setups could

yield different results in getting an EP operational.
Concerning the reliability of the experiment, we argue

that the described experiment protocol should yield simi-
lar results. One aspect that might differ is the choice to
take the measurements as given and not to transform the
data when not normally distributed.

5. CONCLUSIONS
In this paper we question EPs in terms of their ability

to accurately estimate the energy consumption of software.
Through experimentation we evaluate the ability to opera-
tionalize EPs and whether the reported energy consumption
estimations are accurate compared to the actual energy con-
sumption figures.

For our experiment we were only able to install six out of
fourteen EPs found and only two out of those six fully op-
erational for experimentation. Although installation could
be performed successfully, configuration turned out to be
problematic. Even with the help of the respective develop-
ers we could not solve the issues that we came across. Al-
though hardware independence was claimed, the main flaw
remained the ability to cope with different hardware config-
urations.

The actual experiments were performed with Joulemeter
and EC Tools, on respectively the Windows 7 (x64) and
Ubuntu 12.04 operating systems, where we considered the
power consumption averages and the total energy consump-
tion during idle, varying load and full load scenarios. Ex-
cept for the energy consumption in the full load scenario
with Joulemeter, we found significant differences compared
to the actual usage. Concerning the timeliness of the mea-
surements, we found that both EPs are acceptable.

Hence we argue that EP in general can not be used to
estimate the energy consumption of software yet. Although
the tested EPs can be used to get a sense of the energy con-
sumption habits of software, both EPs showed a significant
differences in the one minute runs. We expect this differ-
ence to become unacceptable when longer periods of mea-
surement are performed. The proposed correction factors
of 5.37% for Joulemeter and 4.98% for EC Tools, although
further research is required, are a first step in bringing the
measurements within acceptable bounds.

Based on our experiment, we identify several directions for
future research. A first direction would be to evaluate mul-
tiple EPs on different platforms and hardware setups and
also evaluate cross-platform EPs. Apart from clarifying the
generalizability of our results, more insight could be gained
on differences between platforms. A second direction is to
investigate how our results, and EPs in general can be used
by different stakeholders, e.g. software engineers. Third, is
to investigate the results when the experiment consists of
lengthier runs. It is our belief that in this case all measure-
ments will significantly differ compared to the actual usage
and could provide a test for the proposed correction factor.
A final direction is to repeat the experiment at a later mo-
ment in time to determine whether progress is made with
regard to the development of EPs. Apart from determin-
ing their accuracy, EPs might also allow for more detailed
measurements (e.g. individual hardware components).

Acknowledgments.
A special word of thanks to the developers for their sup-

port to get the EPs operational in the SEFLab.

6. REFERENCES
[1] N. Amsel and B. Tomlinson. Green tracker: a tool for

estimating the energy consumption of software. In
CHI ’10 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’10, pages 3337–3342,
New York, NY, USA, 2010. ACM.

[2] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani,
H. De Meer, M. Q. Dang, and K. Pentikousis.
Energy-efficient cloud computing. The Computer
Journal, 53(7):1045–1051, 2010.

[3] G. G. Castane, A. Nunez, P. Llopis, and J. Carretero.
E-mc2: A formal framework for energy modelling in
cloud computing. Simulation Modelling Practice and
Theory, 39(0):56 – 75, 2013. S.I.Energy efficiency in
grids and clouds.

[4] T. Do, S. Rawshdeh, and W. Shi. ptop: A
process-level power profiling tool. In Proceedings of the
2nd Workshop on Power Aware Computing and
Systems, 2009.

[5] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser,
and J. Visser. Seflab: A lab for measuring software
energy footprints. In Proc. GREENS, pages 30–37.
IEEE, May 2013.

[6] A. Field. Discovering Statistics Using SPSS.
Introducing Statistical Methods Series. SAGE
Publications, 2007.

[7] A. Kipp, T. Jiang, M. Fugini, and I. Salomie. Layered
green performance indicators. Future Generation
Computer Systems, 28(2):478 – 489, 2012.

[8] P. Lago and T. Jansen. Creating environmental
awareness in service oriented software engineering. In
E. Maximilien, G. Rossi, S.-T. Yuan, H. Ludwig, and
M. Fantinato, editors, Service-Oriented Computing,
volume 6568 of Lecture Notes in Computer Science,
pages 181–186. Springer Berlin Heidelberg, 2011.

[9] S. Naumann, M. Dick, E. Kern, and T. Johann. The
greensoft model: A reference model for green and
sustainable software and its engineering. Sustainable
Computing: Informatics and Systems, 1(4):294 – 304,
2011.

[10] A. Noureddine, R. Rouvoy, and L. Seinturier. A
review of energy measurement approaches. SIGOPS
Oper. Syst. Rev., 47(3):42–49, Nov. 2013.

[11] S. Schubert, D. Kostic, W. Zwaenepoel, and K. Shin.
Profiling software for energy consumption. In Green
Computing and Communications (GreenCom), 2012
IEEE International Conference on, pages 515–522,
2012.

[12] B. Steigerwald and A. Agrawal. Green software.
Harnessing Green IT: Principles and Practices,
page 39, 2012.

[13] Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang,
Y. Li, and Y. Gao. Green challenges to system
software in data centers. Frontiers of Computer
Science in China, 5(3):353–368, 2011.

[14] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson,
B. Regnell, and A. Wessln. Experimentation in
Software Engineering. Springer Publishing Company,
Incorporated, 2012.

[15] R. Yin. Case Study Research: Design and Methods.
Applied Social Research Methods. SAGE
Publications, 2009.

	Introduction
	Experiment setup
	Energy profilers
	Equipment
	Experiment protocol
	Reboot vs no reboot

	Results
	Operation
	Accuracy
	Joulemeter
	Energy Consumption Tools

	Correction factor

	Threats to validity
	Conclusions
	References

