An Energy Consumption Perspective on
Software Architecture
A Case Study on Architectural Change

Erik A. Jagroep!:2, Jan Martijn E. M. van der Werf!, Ruvar Spauwen!
Leen Blom?, Rob van Vliet?, and Sjaak Brinkkemper1

>

L Department of Information and Computing Science
Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{e.a.jagroep, j.m.e.m.vanderwerf, r.a.spauwen, s.brinkkemper}@uu.nl,
2 Centric Netherlands B.V.
P.O. Box 338, 2800 AH Gouda, The Netherlands
{leen.blom, rob.van.vlietl}@centric.eu

Abstract. The rising energy consumption of the ICT industry has triggered a
quest for more sustainable, i.e. energy efficient, ICT solutions. Software plays an
essential role in finding these solutions, as software is identified as the true con-
sumer of power. However, in this context, software is often treated as a single,
complex entity which fails to provide detailed insight in the elements that invoke
specific energy consumption behavior.

In this paper, we propose an energy consumption perspective on software archi-
tecture as a means to provide this insight and enable analysis on the architectural
elements that are the actual drivers behind the energy consumption. In a case
study using a commercial software product, the perspective is applied and its po-
tential demonstrated by achieving an energy consumption saving of 67.1%.

Keywords: Software architecture - Energy consumption perspective - Sustainability

1 Introduction

The energy consumption of the Information and Communication Technology (ICT)
sector is a booming topic of interest. Recent figures indicate that at least a tenth of the
world’s electricity use is on behalf of ICT [8]]; a figure that has kept growing over the
years. As a result of the increased awareness on the subject, the term ‘sustainability’ has
emerged which is to “meet the needs of the present without compromising the ability of
future generations to satisfy their own needs” [9]]. Within the research community this
has resulted in much attention going towards increasing the energy efficiency of ICT.
Only recently the role of green software is stressed in finding sustainable ICT solu-
tions [7]]. While energy is directly consumed by hardware, the operations are directed
by software which is argued to be the true consumer of power [14]. In current research
on the Energy Consumption (EC) of software (cf. [3}/4]]), the software is often treated as
a single, complex entity (i.e. considered on application level) instead of the inter-related

elements it actually consists of. A breakdown into hardware components and ‘units of
work’ is made, but this does not provide insight into which modules and functions in-
voke specific energy consuming behavior. Consequently, a stakeholder can not direct
sustainability efforts to where they are needed.

We argue Software Architecture (SA) is able to fill this gap and in this paper we
investigate how EC can be positioned within the scope of SA. An Architecture Descrip-
tion (AD) complemented with EC measurements, has the potential to help determine
appropriate adjustments, identify where they should be applied and help to simplify the
context by limiting the scope. Using a commercial software product, we construct an
EC perspective on SA and validate the perspective through a case study. The potential of
our research is demonstrated by realizing a reduction in energy consumption of 67.1%.

In this paper we first present related work on energy consumption and SA (Sect.[2).
After this brief introduction we continue with constructing the perspective alongside a
case study (Sect.[3). Finally, we provide a conclusion, discuss the results and directions
for future research (Sect.[d).

2 Green Software and Software Architecture

Our approach to analyze the EC of software on architectural level is not unique. The
node map presented in [3] for example, closely resembles what could be labeled as
a deployment view which, after including EC figures, provides a ‘heat map’ of the
system. Following this same line [4] presents the ‘M E3S A’ model in which again the
deployment and functional components of the software are investigated. In relation to
green software, a limitation of both approaches is that most recommendations relate to
hardware aspects and only provide ‘strong clues’ on software level.

One of the main issues with respect to green software [[/] is to perform detailed EC
measurements. Specialized environments, e.g. [4]], enable detailed measurements but
often lack the ability to expand to more complex environments (e.g. data center) where
other approaches, e.g. ‘E-Surgeon’ [10], are required that have their own limitations.
Consequently, the EC of software is often measured by relating the hardware EC to
computational resource usage on behalf of the software [3]].

To perform EC measurements we expand on the call for sustainability to become
a Quality Attribute (QA) with resource consumption, greenhouse gas emissions, social
sustainability, and recycling as subcharacteristics [[7]. Continuing on the path of EC we
focus specifically on resource consumption which, following the ISO 25010 standard,
can be quantified using quality properties and quality measures. From literature [2-6]
three potential quality properties can be identified; Software utilization (the degree to
which hardware resource utilization on the account of software meets requirements),
Energy usage (the degree to which the amount of energy used by the software meets
requirements) and Workload energy (the degree to which the EC related to performing
a specific task using software meets requirements). In Table[I|the properties are broken
down into quality measures complemented with a definition and measurement function.
Although further research is required, for now we assume that these quality properties
cover the resource consumption subcharacteristic.

Green Architectural Tactics To address concerns for a software product on the level
of the SA, tactics are applied. A tactic is a decision that influences the control of a
QA [1]] and is a design option that helps the architect in realizing a desired property for
a system. In relation to EC, there is still work to be done to find a set of tactics that
are able to satisfy EC concerns. Consequently, the presented tactics are by no means
definitive and should be considered as a source of inspiration for green software efforts.

In [11]] a catalog is presented consisting of three categories, including tactics, that
address energy efficiency in the cloud. The energy monitoring category tactics are aimed
at collecting power consumption information and estimating infrastructure and software
component power consumption. Tactics in the self-adaptation category present possi-
bilities for optimization during run-time. Finally, the cloud federation tactics are aimed
at respectively finding and switching to the most energy efficient services to perform a
task. Although the tactics are explained specifically in a cloud computing context, they
could prove valuable for software in general.

Increase hardware utilization |3|]; Ineffective use of hardware is a common source
for energy inefficiency and is one of the triggers to consolidate the number of active
servers. From an EC point of view less hardware reduces the idle energy consumption.

Table 1. Quality measures for to the resource consumption subcharacteristic.

Resource consumption
Software utilization
CPU Utilization (CPUU) Measure of the CPU load related to running the software.
current CPU load — idle CPU load
Memory Utilization (MU) Measure of the memory usage related to running the software.

allocated memory
total memory X 100%

Network Throughput (NT) Measure of the network load related to running the software.
Packages, sent/received bytes per second

Disk Throughput (DT) Measure of the disk usage induced by running the software.
Disk 1/0 per second

Energy usage
Software Energy Con- Measure for the total energy consumed by the software.
sumption (SEC)

EC while operating — idle EC
Unit Energy Consumption Measure for the energy consumed by a specific unit of the soft-
(UEC) ware.

Unit CPUU ., UnitMU ., UnitNT ., Unit DT
i i (Topor X Ty X T X ;)T)XSEC i
Relative Unit Energy Con- Measure for the energy consumed by a specific unit compared
sumption (RUEC) to the entire software instance.
UEC
e x 100%
Workload energy

Task Energy Consumption Measure for the energy consumed when a task is performed.

(TEC)
SEC
of tasks performed

Unit Task Energy Con- Measure for the energy consumed when a task is performed by
sumption (UTEC) a specific unit of the software.

UEC
of tasks performed

Concurrency architecture variation [|16]]; In this specific case the Half Synchronous
/ Half Asynchronous and the Leader / Followers concurrency architectures are com-
pared and a significant difference was found in the advantage of the first. However,
further investigation is required to test the generalizability of this finding.

Increase modularity; In terms of database calls, software consisting of fewer mod-
ules could require less calls while significantly more data is transferred per call. When
software consists of more modules, an increase in database calls could be observed with
the potential that less data is transferred per call, i.e. the calls are more fitted to the pro-
cess. Assuming that increased disk usage has a marginal impact on the EC figures, less
CPU capacity is required for processing the call thereby lowering the EC per call.

Network load optimization; Although modularity can positively affect the EC of
software [15]], more modules also implies a higher communication load. A positive
effect on the EC is expected with a reduced communication load.

3 Energy Consumption Perspective on Software Architecture

To address the EC of software on an architectural level we propose to construct an EC
perspective, which is ‘a collection of activities, tactics, and guidelines ... used to ensure
that a system exhibits a particular set of related quality properties that require consid-
eration across a number of the systems architectural views’ [[12]. In order to create a
comprehensive EC perspective, the perspective catalog [12]] (Fig. [) is used where for
each viewpoint a key issue is formulated that addresses the relation to EC and a sug-
gestion is provided on how the AD can be altered to adhere to the perspective. Note
that the original catalog contains six viewpoints, but a seventh viewpoint, the ‘context
view’, was added to define societal and economical aspects.

To increase the practical applicability of the perspective, it was created alongside
a case study using Document Generator (DG). DG is a commercial software product,
used as a service with other commercial software products, to generate over 30 million
documents per year by over 300 customers. The case study was performed in a test
environment (Fig. [2) that allowed for EC measurements using a WattsUp? Pro (WUP),

Portrays the hardware environment Portrays system-wide strategies
where the software will be executed. for operational concerns.
\ —

Portrays (quantifiable) strategic goals What processes of the software run on which hardware? How can run-time aspects be fine-
that should be met by the software. y __——tuned to reduce energy consumption?

How can software help to achieve Deployment view <—— Operational view —

organizational sustainability goals? Portrays a simplified context for

1 developers during development.

—
A - | . What green algorithms can be
Contextview ~—— Software design <—— Development view _,jjied to the software?

I I 1
Functional view Information view Concurrency view
How much energy does How can the information flow be How can functional elements be mapped onto processes
each function consume? optimized to increase energy efficiency? and what hardware will execute these processes?
AN
Portrays functional elements and their relations Portrays critical data sections that might Portrays functional elements on
including an energy consumption figure per element. affect the efficiency of the processes. concurrency units.

Fig. 1. Viewpoint catalog to apply an EC perspective, after [[12], including key issues and AD
alteration suggestions.

Energy data I

,—Performance data] '
Energy -Measurement Test [Client Logging
equipment server Task | system server

instructions

Fig. 2. Setup of the test environment used to perform the case study.

[Requirements met]

s " | " [Requirements met]
Capture energy Create energy Assess against Determine Evaluate

requirements profile requirements adjustments adjustments

[Requirements not met] T [Requirements not met]

Fig. 3. The activities to apply the EC perspective to software architecture.

a device capable of measuring the total power drawn by an entire system with a one
second interval between measurements, and performance measurements using Perfmon,
a standard performance monitoring tool with Microsoft Windows. As DG was installed
on the test servelﬂ measurements were performed on this system and data was collected
with the loggin server. Finally, the client system was used to perform a task with DG.

Perspective Activities Using a perspective a stakeholder has a means to analyze and
validate qualities of an architecture and drive architectural decision making. Following
[12]], we provide a set of activities (Fig. 3 to apply the EC perspective to the views.

1. Capture energy requirements; Requirements form the basis for change in relation
to SA [1]] and should be considered when strategical, economical or customer motives
are present. For the case study we focused on DG’s core functionality and investigate an
activity encompassing the generation of 5000 documents, where each single document
generation is considered a separate task. In relation to EC we formulate the requirement
for DG to consume less energy while performing the specified task.

2. Create energy profile; An energy profile of the software provides the stakeholder
with a starting point and a benchmark to evaluate results. The profile for DG was created
with the following protocol; (1) Clear internal WUP memory, (2) Close unnecessary
applications and services on the test server, (3) Start WUP and Perfmon measurements,
(4) Perform specified task using client and (5) Collect and check Perfmon and WUP
data from logging server. In total 22 measurements were performed divided over six
series. After checking, 19 out of these 22 measurements were considered valid. For
the energy profile, DG on average required 41 minutes and 49 seconds to generate the
documents and with a SEC of 17560 Joule (J) (standard deviation 3577 J). An average
TEC was found of 3.51 J (£2299) per generated document.

The AD for DG (Fig. [3)), including the functional, concurrency and deployment
view, learned that DG consists of the Document.exe, Config.exe and Connector.exe
processes. The ‘Generator’ element (Document.exe) is responsible for the actual docu-
ment generation, ‘Utilities” (Config.exe) provides configuration options and the ‘Com-
poser’, ‘Interface’ and ‘Connector’ elements (Connector.exe) handle communications.

3 HP Proliant DL380 G35, Intel Xeon E5335 CPU, 800GB local storage (10.000 rpm), 64GB
PC2-5300, 64 bit MS Windows Server 2008R2 (Restricted to 2 cores), VMware vSphere 5.1

Mapping the measurements on the AD, performance data shows a 49% CPUU of Doc-
ument.exe, with an average utilization rate of 50.7% and 7.4% for the two available
cores, whereas the other processes (Configuration.exe and Connector.exe) did not ap-
pear active. Consequently only the the TEC for Document.exe was added in the AD.

3. Assess against requirements; Using the energy profile an assessment should be
performed on whether the software meets the requirements. Since we did not formulate
a quantitative goal for the requirement, e.g. consume at most X Joule per document,
we could not assess the requirements against the energy profile. Hence the profile was
labeled as benchmark and we proceeded to determining adjustments.

4. Determine adjustments; Based on the assessment, the adjustments should be deter-
mined that are to be applied to the software or its context. From the previous activities
we learned that the energy consumption during the activity was mainly caused by the
‘Generator’ element. Looking at the performance data, we argued that applying the in-
crease hardware utilization tactic had the potential to let us meet the requirement. In
collaboration with the DG developer the ‘balancer’ was added, operating according to
the broker pattern, changing the SA as shown on the right hand side of Fig.[3}

5. Evaluate adjustments; After adjustment, an evaluation should be performed to
determine whether the requirements are met and assure that no unwanted effects are
brought about. After adjustment, 33 (out of 36) valid measurements were obtained (di-
vided over seven series) following the earlier described protocol. On average the new
version of DG required 39 minutes and 14 seconds to generate the documents with a
SEC of 5782 J (std. dev. 1647 J). In this new situation, TEC was reduced with 67.1%
to an average 1.16 J per generated document and a significant decrease in CPU activity
was perceived (Fig. d). The CPUU for Document.exe decreased to an average 19.2%,
whereas the utilization rates of the cores appeared evenly divided (12.6% and 15.1%
respectively). A note should be made though, as the database server was considered out
of scope we did not include any effects on this hardware.

Threats to validity With regard to the validity of the case study, an evaluation is
performed following the threats as identified in [[13]]. The construct validity considers
whether the correct measures were identified for the object under study. With investigat-
ing EC, there is little discussion on the relevant measures. To relate these measurements
to the software or elements thereof, established performance indicators were used; a
common method that is also applied by others in this field of research.

In light of the internal validity, despite careful preparations, due to the behavior of
services we can not be 100% certain that DG was solely responsible for the load on
the test server. Therefore each individual measurement was checked for such processes

% CPU time

Time

Fig. 4. Comparison of CPU activity of the test server during a measurement.

using performance data. Another threat is the lack of experience with configuring DG,
e.g. we experienced firewall issues, resulting in a lower number of measurements at the
start. For the evaluation we were more familiar with the case and relatively more valid
measurements were obtained per series.

A threat to the external validity is the fact that the case study was performed in
a separate test environment containing specific hardware. Given the relation between
hardware and EC, different hardware could provide different findings in absolute terms.
However, since an actual commercial software product was used, we argue that the
proposed improvement is not specific to our environment.

Finally, reliability is concerned with the data and analysis thereof being dependent
on the specific researchers. The measurements within the case study were performed by
following a strict protocol, of which the activities are openly described. We therefore
argue that following the described protocol should yield similar results.

4 Conclusion

In this paper we set out to investigate how EC can be positioned within the scope of soft-
ware architecture through an EC perspective. In its current form the perspective enables
stakeholders to identify, measure and analyze the EC of architectural elements, direct
green efforts with regard their software product to where they are needed and verify the
results. Using the perspective and the measures presented with the sustainability QA, a
stakeholder has a means to quantitatively consider EC during the the design phase.

Alongside constructing the perspective, a case study was performed using a com-
mercial software product (DG). The energy profile for DG directed our efforts and
through an architectural change we reduced the energy consumption with 67.1% per
generated document. Considering the frequency at which this task is performed, the
savings could add up significantly from an organizational dimension.

However, we do acknowledge that the EC perspective is by no means as mature as
other perspectives related to QAs. To further complete the perspective, among others by
providing guidelines, more case studies are required for which the current perspective

“—
4

v

45 '3
‘2 Composer Interface ! Templates 2 Composer Interface Templates
- : -
i § v H £ v
S i .S
e i Connector I o [Connector
' g ! D{alogs |} % D\valogs
‘@ Utilities e Database | | | & Utilities e Database
£ aE [_[Approval |]
8 Run 18 Run
"""""""""""""" [2 |
Service bus | Service bus
| ‘2
| -
g
| H g Balancer [Generator ;
= Mail
| 8 ‘
I TestserveriS 116 per document _ :
Before . After

Fig. 5. Functional, concurrency and deployment view of DG for subsequent releases.

can serve as a starting point. Therefore the perspective should be considered as a step
in the right direction to structurally consider the EC of a software product on SA level.

Based on the results presented in this paper, several directions for future research

can be identified. First is a deeper investigation into the EC perspective and improve-
ment by application in practice. For example improve on the visualization of EC aspects
in the AD. Second is to investigate architecture variations, design patterns and tactics
to find what actually comprises a sustainable software architecture. A final direction is
to investigate, in depth, how insights gained from the architectural perspective can be
translated to guidelines for software development.

References

1

2.

11.

12.

13.

15.

16.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series in
Software Engineering. Pearson Education, 2012.

P. Bozzelli, Q. Gu, and P. Lago. A systematic literature review on green software metrics.
Technical report, Technical Report: VU University Amsterdam, 2013.

. K. Grosskop and J. Visser. Identification of application-level energy optimizations. Proceed-

ing of ICT for Sustainability (ICT4S), pages 101-107, 2013.

. G. Kalaitzoglou, M. Bruntink, and J. Visser. A practical model for evaluating the energy

efficiency of software applications. In ICT for Sust. 2014 (ICT4S-14). Atlantis Press, 2014.

. E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann. Green software and green soft-

ware engineering—definitions, measurements, and quality aspects. on Information and Com-
munication Technologies, page 87, 2013.

. A. Kipp, T. Jiang, M. Fugini, and I. Salomie. Layered green performance indicators. Future

Generation Computer Systems, 28(2):478 — 489, 2012.

. P.Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Miiller, F. Paulisch, G. Scanniello, B. Pen-

zenstadler, and O. Zimmermann. Exploring initial challenges for green software engineering:
summary of the first greens workshop, at icse 2012. ACM SIGSOFT Software Engineering
Notes, 38(1):31-33, 2013.

. M. P. Mills. The cloud begins with coal: an overview of the electricity used by the global

digital ecosystem. Technical report, Digital Power Group, August 2013.

. S. Murugesan. Harnessing green it: Principles and practices. IT Prof., 10(1):24-33, 2008.
. A. Noureddine, R. Rouvoy, and L. Seinturier. Monitoring energy hotspots in software. Au-

tomated Software Engineering, pages 1-42, 2015.

G. Procaccianti, P. Lago, and G. A. Lewis. A catalogue of green architectural tactics for the
cloud. In Maint. and Evol. of Service-Oriented and Cloud-Based Systems (MESOCA), 2014
IEEE 8th Int’l Symp. on the, pages 29-36, Sept 2014.

N. Rozanski and E. Woods. Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, 2011.

P. Runeson and M. Host. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, 14(2):131-164, 2009.

. Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang, Y. Li, and Y. Gao. Green challenges

to system software in data centers. Frontiers of Comp. Sc. in China, 5(3):353-368, 2011.

S. te Brinke, S. Malakuti, C. Bockisch, L. Bergmans, and M. Aksit. A design method for
modular energy-aware software. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1180-1182. ACM, 2013.

B. Zhong, M. Feng, and C.-H. Lung. A green computing based architecture comparison
and analysis. In Proc. of the 2010 IEEE/ACM Int’l Conf. on Green Computing and Com-
munications & Int’l Conf. on Cyber, Physical and Social Computing, pages 386-391. IEEE
Computer Society, 2010.

	An Energy Consumption Perspective on Software Architecture
	Introduction
	Green Software and Software Architecture
	Energy Consumption Perspective on Software Architecture
	Conclusion

