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Abstract—In a microservice architecture, each service is de-
signed to be independent of other microservices. The size of
a microservice, defined by the features it provides, directly
impacts its performance and availability. However, none of
the currently available approaches take this into account. This
paper proposes an approach to improve the performance of a
microservice architecture by workload-based feature clustering.
Given a feature model, the current microservice architecture,
and the workload, this approach recommends a deployment that
improves the performance for the given workload using a genetic
algorithm. We created MicADO, an open-source tool, in which
we implemented this approach, and applied it in a case study on
an ERP system. For different workloads, the resulting generated
microservice architectures show substantial improvements, which
sets the potential of the approach.

I. INTRODUCTION

Interest in microservice architectures has increased over the
last few years, with a significant increase since 2014 [23].
A microservice architecture is an architecture in which a
single application is designed as a set of independent small
services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP API [16]. As a
result, every module is an independently deployable service.
Combined with the lightweight communication protocols used,
every service can use its own programming language and can
be easily modified and scaled.

The size of a microservice is directly defined by its features,
i.e., chunks of functionality that deliver business value [4].
A microservice that offers more features will be larger than
a service with only a few features. The term microservice
indicates that services should be small. However, people are
reluctant to define how small they should be [22]. There are
several metrics for the size of microservices, such as lines of
code of a microservice, being able to rewrite a microservice in
6 weeks or having a two-pizza team (two pizzas are enough to
feed the entire team) per service [5]. Another typical answer
is that a microservice should do only one thing, which leaves
room for interpretation.

None of the existing metrics are related to quality at-
tributes [2]. However, the size of a microservice has a direct
impact on the performance and scalability of the application.
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Consequently, metrics related to performance and scalability
seem more appropriate than existing metrics.

Moving features to other, possibly new microservices di-
rectly impacts the performance and scalability of the system.
The size of the smallest scalable unit becomes smaller, result-
ing in an increase of scalability. The effect on the performance
of the system however depends on the relationship between its
features. If, for example, two features are heavily dependent
on each other, splitting them over different microservices
might result in significant communication overhead, and thus
performance decreases. Merging two microservices results in
a loss of scalability, but performance might increase due to
decreased communication overhead. Additionally, the actual
usage of features by users determines the impact of moving
features. If a seldom-used feature is moved, the impact is much
smaller than moving a feature that is used frequently.

Based on these observations, this paper proposes an auto-
mated approach for optimizing the performance and scalability
of a microservice architecture by modifying the placement
of features in microservices based on the workload of a
microservice system. The approach is depicted in Figure 1.
Based on a deployment model that describes the properties
and dependencies of the features the architecture should im-
plement, and the software operation data collected as result
of a workload on the current system, our approach suggests
a clustering of these features in microservices, optimized for
the given workload.
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Fig. 1: Overall overview of the proposed approach.



The remainder of this paper is structured as follows. Sec-
tion II introduces the feature model and its mapping to mi-
croservice architectures. Section III describes how we measure
the workload of a running system. The feature model and
workload are input of our genetic optimization algorithm,
which is discussed in Section IV. Our approach is validated in
a case study, of which the results are presented in Section V.
Finally Section VI provides a discussion of this research and
concludes the paper.

II. MODELING FEATURES IN MICROSERVICES

The heart of the microservice model is formed by the set of
features that the system should implement. In a microservice
architecture, these features are distributed over different mi-
croservices. This distribution is influenced by the dependencies
between different features.

A. Feature Model

A feature is a chunk of functionality that delivers business
value [4]. It is represented by a set of unique properties
together with a set of properties of other features it depends
upon. Since many formalisms exist to express features and
their dependencies, such as Feature Diagrams [20], we only
formalize the elements that are required, so that architects can
freely choose their favourite notation. In our formalization, the
set of features F is a partitioning of the set of properties P ,
i.e., each property belongs to exactly one feature. Similarly, the
properties of the feature determine the feature dependencies.
We therefore model the feature dependencies as a directed
graph on the properties. This results in the following definition
of a Feature Model:

Definition II.1 (Feature Model)
A feature model is a 3-tuple (P, F,R) with
• a set of properties P ;
• a set of features F , being a partitioning of P ;
• and the dependency graph (P,R), a directed graph.

Notice that we allow properties to depend on properties within
the same feature. An example feature model is depicted in
Figure 2. This example consist of a subset of features typically
found in a web shop: an invoice (A), an order (B), and
customer feature (C). The invoice has a payment term P1,

AP1 P2 P3

BP4 P5 P6

CP7 P8 P9

Fig. 2: Example feature model with three features: Invoice (A),
Order (B) and Customer (C), each having three properties.

an invoice date P2, and an identifier P3, based on both the
order identifier and the customer identifier. The order has an
identifier P4, based on the name of the customer, a delivery
address P5, and order date P6. Finally, Customer has an
identifier P7, a name, P8, and address P9. In our model, we
thus represent feature A by {P1, P2, P3}, and the set of all
features F by {{P1, P2, P3}, {P4, P5, P6}, {P7, P8, P9}}.

B. Microservice Architectures

A microservice architecture implements a feature model by
instantiating features in microservices. A first approach would
be to partition the features over the different microservices.
Although this would correctly model microservice architec-
tures, it is not sufficient to model event-driven microservices.
In this model, features publish events to which other features
in other microservices can subscribe. These events allow
the system to maintain data consistency across microservices
without using distributed transactions [19]. The logic needed
to handle these events is identical to the logic of the main
feature, hence we consider this to be duplicated features. These
duplicated features are internal, i.e., only available within
that microservice. The feature emitting the events is the only
feature that exposes that functionally publicly, and contains all
properties. This feature instance is the public feature instance
of a feature. Every feature thus has one public feature instance
and zero or more internal feature instances. An internal feature
instance contains a non-empty subset of the properties of its
feature, since it might only require a part of the data from an
event. This results in the following definition of a Microservice
Architecture Model:

Definition II.2 (Microservice Architecture)
Given a feature model (P, F,R), a Microservice Archi-
tecture is a 4-tuple (I,M, λ, h) with:
• a set of feature instances I;
• a set of microservices M , being a partitioning of I;
• the property instantiation function λ : I → 2P , a

total function that maps each feature instance to a
set of properties;

• the public instance function h : F → I , a total func-
tion that defines for each feature its public instance;

such that
• Each microservice contains all instances necessary to

fulfill the dependency requirements, i.e.
∀m ∈M : ∀i ∈ m, p ∈ λ(i), q ∈ P :

(p, q) ∈ R =⇒ ∃j ∈ m : q ∈ λ(j)
• Every microservice contains each feature at most

once, i.e.
∀m ∈M : ∀i, j ∈ m : ∃f ∈ F :

( λ(i) ⊆ f ∧ λ(j) ⊆ f ) =⇒ i = j

• Each feature instance is a subset of the properties of
its feature, i.e.
∀i ∈ I : ∃f ∈ F : λ(i) ⊆ f



• Each feature has a public instance that contains all
its properties, i.e.,
∀f ∈ F, i ∈ I : h(f) = i =⇒ f = λ(i)

• Each microservice contains at least one public feature
instance, i.e.
∀m ∈M : ∃i ∈ m, f ∈ F : λ(i) = h(f)

Consider again the example feature model of Figure 2. The
simplest deployment for this feature model would be to create
a microservice architecture in which all features are instanti-
ated in a single microservice, as depicted in Figure 3(a). We
call this architecture the minimal microservice architecture.
The gray elements indicate public feature instances, while the
white elements indicate internal feature instances. Another
possibility would be to deploy a microservice architecture
where each microservice has exactly one public feature, called
the maximal microservice architecture. In this case, there are
three microservices, mO, mC and mD. As a result of the
dependencies defined in the feature model, this introduces
internal feature instances in the microservices. We denote
a feature instance by iX{P1,...,Pn}, where P1, . . . , Pn are
properties of feature X . We omit the subset of properties if it is
the complete set of properties of that feature. For microservice
mA, this results in mA =

{
iA, iB{P4}, iC{P7,P8}

}
. The other

microservices can be represented as mB =
{
iB , iC{P8,P9}

}
and mC = {iC}.

III. MEASURING WORKLOAD THROUGH SOFTWARE
OPERATION DATA

The second component of our approach is the workload
of a deployed architecture. We define the workload in terms
of concurrent users, both human and other systems, and used
features as a function of time. Time is an important dimension
in the usage of an application.

One way to obtain the workload of a deployed microservice
architecture is by monitoring its operation. Monitoring the
operation of a system is not new and the use of software
operation data [21, 25] is widely used in software engineering
practices [3], such as maintainability [21], problem diagno-
sis [26] and compliance [25]. In the remainder of this section,
we utilize software operation data to obtain both the usage and
the performance of a deployed microservice architecture.

A. Feature Usage

Feature usage over time provides valuable insight in fre-
quent usage patterns, and therefore it is worth optimizing for.
In the case of a microservice architecture, most communication
is performed via lightweight mechanisms, such as the HTTP
protocol, that support logging out of the box. In essence, a
microservice architecture follows the client-server paradigm,
where clients interact by requesting services of servers, which
provide a set of services [2]. From the access logs, which
contain information about which feature has been called, by
whom and when, it is possible to derive the usage of features
at the server. Process Mining [1], which analyses event logs
to discover, monitor and improve real processes, allows us
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Fig. 3: Possible Microservice Architectures for the feature
model depicted in Figure 2.

to analyse these access logs to derive relevant feature usage
metrics.

B. Performance Metrics

Feature usage is only one aspect of the workload of a
system. Although access logs provide useful insights in feature
usage, they do not contain any information about the actual
system performance and scalability. Metrics are able to provide
this insight. We define a metric as a more abstract representa-
tion, such as the mean or sum, of a time series of individual
measurements. A measurement is a quantitative attribute of a
running software system that can be measured automatically.
Metrics can be derived from software operation data, e.g.
by monitoring when a microservice executes a feature, and
its duration. Based on these measures, performance metrics
can be derived. An important requirement for all performance
metrics is that all metrics should allow to be traced back to
the individual features a microservice implements. Different
levels of performance metrics can be identified [14]:



Application metrics Application metrics are metrics reported
by the application itself.

Platform metrics Platform metrics are metrics reported by
the framework or runtime of the application.

System metrics System metrics are reported by the operating
system and/or hardware of the server.

Platform and system metrics typically have process level as
smallest granularity level. This means that common metrics
such as memory usage are available for individual processes.
A finer level of detail can be achieved using profilers, however
they have a significant impact on the performance of an
application, making them not suitable for production envi-
ronments. While process level granularity typically provides
sufficient details for monitoring a running application, it does
not provide sufficient detail to link them to individual features,
since every processes contains one or multiple features.

Typically these metrics are linked to features by adding
metadata to the metric. It is recommended to use a logging and
monitoring system that supports structured metrics, to store
relevant metadata as well to link these metrics to individual
features. If the metadata contains both a unique request
identifier and feature identifying data, the performance impact
of the system’s usage per feature can be determined using
performance or process mining tools.

IV. OPTIMIZATION ALGORITHM

Now that both the deployment and the workload have been
described, the deployment can be improved based on the
workload.

The problem at hand, the distribution of features over
microservices, is closely related to the problem of software
module clustering, which is defined as automatically finding a
good clustering of software modules based on the relationships
among the modules [11]. In this field, several optimization
approaches have been proposed, such as hill climbing [12, 13]
and genetic algorithms [7, 18]. Both methods use a fitness
function to express the quality of the clustering. Since the
approach using an genetic algorithm combined with a multi-
objective approach by Praditwong et al. resulted in better re-
sults than hill climbing, we decided to use a genetic algorithm
to solve this problem.

A. Genetic Algorithm

In order to apply a genetic algorithm, the problem should
be ‘genetically’ encodable, such that the genetic operators
mutation and crossover are able to transform a ‘chromosome’,
i.e. a possible solution, in a meaningful way. The genetic
encoding is a representation of the problem that resembles
the way DNA is represented. Typically this is depicted as an
array of bits or characters.

A single chromosome in the population should represent a
single microservice architecture. As described in Section II,
a microservice architecture can be described as a 4-tuple
(I,M, λ, h) given a feature model. Chromosomes should be
encoded in such a way that it is possible to compare them.

Different microservice architectures of the same feature
model, contain a different number of internal feature in-
stances. For example, the minimal microservice architecture
contains no internal feature instances, whereas the maximal
microservice architecture contains the most feature instances.
Feature instances are thus a possible signal that the solution
is sub-optimal for a microservice architecture. A possible
solution would be to include all feature instances in the
encoding of a deployment. This would result in overhead in
the representation, as many feature instances are not present
in a deployment.

However, the feature instances required for a deployment
can be derived from the placement of the features over the
microservices and the dependency graph of the feature model.
This dependency graph encodes which features should be
created internally to obtain an independent microservice where
all dependent features are included. As the set of features
of a feature model is stable across the deployments, this
representation is an efficient encoding of the problem.

A simple representation of the placement of a feature in
a microservice is to assign an integer to every feature that
represents in which cluster it is located. As an example, for
the microservice architecture depicted in Figure 3(b), mapping
feature A to 1, B to 2 and C to 3, and microservice mA to 1
and mB,C to 2, results in the encoding shown in Table I.

TABLE I: Genetic encoding of a deployment

Feature 1 2 3
Microservice 1 2 2

However this simple representation does not uniquely iden-
tify a deployment, as shown by Table II, which gives another
encoding of the same deployment. A solution having more
than one representative chain in the encoding scheme results
in the encoding having redundancy [15]. The redundancy of
this simple encoding is large, since a deployment with m
microservices, can be represented by m! different chains.
Since the redundancy grows exponentially for the number
of microservices, a large part of the domain of the genetic
encoding consists of duplicate chains.

TABLE II: Different genetic encoding of a deployment shown
in table I

Feature 1 2 3
Microservice 2 1 1

To solve this problem, the microservice identifier should be
deterministically derived in such a way that the same features
in a microservice result in the same microservice identifier.
Hence the identifier should be based on the features contained
in the microservice. Instead of assigning an incremental integer
as identifier of the cluster, the numeric identifier of the feature
with the highest feature number is chosen as microservice
identifier. An example of this encoding applied to the same
deployment is shown in Table III.



TABLE III: Non redundant genetic encoding of a deployment
shown in Table II

Feature 1 2 3
Microservice 1 3 3

B. Fitness Function

To compare several deployments, a function that expresses
the quality of a deployment is required. The fitness of a
deployment can be calculated by actually implementing the
deployment and executing the workload on the deployment.
Based on the performance metrics, the fitness can be deter-
mined. However, evaluation of a deployment becomes cum-
bersome and time consuming. Hence approximations of the
performance of a deployment are required.

Queueing networks are a well-established method for per-
formance modelling [9]. Since computer systems can be
represented as (networks of) queues and servers, this is a
popular performance modelling technique.

The simplest model of queueing theory, the M/M/1 model,
has proven useful in several real life scenarios. For example,
it has been used in the performance analysis of cluster-based
web services [10] and multi-tier internet services [24].

Extensions to this model are required to model a microser-
vice architecture. The standard M/M/1 model assumes that all
requests are of the same type, and have an exponential distri-
bution. A microservice containing several features processes
requests of different types. Based on the type of requests,
it is likely that different types of requests have a different
exponential distribution. As in a M/M/1 model, the arrival
rate is a Poisson process which can be merged and split [9]
based on the chance that a request has a certain class. Thus,
each class has its own service rate, denoted by µi, arrival rate,
denoted by λi, and a chance of occurring, denoted by pi. In
this model, the total arrival rate of the server is:

λ =

n∑
i=1

( pi · λi ) (1)

In other words, the total arrival rate of the service equals
the weighted sum of the arrival rates of the different cus-
tomer classes. Similarly, the service time is calculated as the
weighted sum of the service times of the different classes.
Hence, the mean service time of the server can be calculated
using the following formula:

µ =

n∑
i=1

( pi · λi · µi ) (2)

The formalization of the utilization and waiting times remain
the same as for the M/M/1 case, i.e., the utilization is defined
by ρ = λ

µ .
As an approximation for the chance that a request is

of a certain class, we assume the classes to be uniformly
distributed, i.e.,

pi =
λi∑n
j=1 λi

(3)

Similarly, the arrival rate, service rate and waiting time need
to be approximated for the deployments under evaluation by
the genetic algorithm.

For brevity the following notation is introduced:

Definition IV.1 (Microservice Performance Model)
A microservice m is a 2-tuple (λ, µ), where λ denotes the
mean arrival rate, and µ denotes the mean service time.

Now, a merge of two microservices mA = (λA, µA) and
mB = (λB , µB) can be represented by

mi ⊕mj = (λmerge , µmerge) (4)

It is trivial to see that λmerge is the sum of the arrival rates of
the individual microservices, i.e., λmerge = λA+λB . Unfortu-
nately, calculating the mean service rate is more complicated.
Summing the individual service times coincides running them
in parallel, which is clearly not the case in microservices.
Hence the mean of both µA and µB seems more appropriate,
i.e. the mean service rate of the merged microservice is the
weighted mean service rate of both individual microservices.
It is easy to think of a scenario in which λA is much larger
than λB . µmerge would be skewed towards µA with a simple
mean. Hence a weighted mean based on the arrival rate of the
different customer types seems more appropriate. This results
in the following formula:

µmerge =
λA

λA + λB
· µA +

λB
λA + λB

· µB (5)

Based on the calculated mean arrival rate and the mean service
rate, the waiting time can be calculated using the same formula
for simple M/M/1 queues.

Definition IV.2 (Merging two microservices)
Given two microservices mA = (λA, µA) and mB =
(λB , µB), their merge, denoted by mA ⊕mB is again a
microservice, defined by

mA ⊕mB = (λA + λB ,
λA

λA + λB
· µA +

λB
λA + λB

· µB)

C. Assumptions and Approximations

Approximating a microservice by a queueing server is
only possible under certain assumptions. First, we assume
requests to arrive memoryless, i.e., the inter-arrival rate be-
tween two requests is independent. Additionally, we assume
each microservice has an infinite capacity. Similarly for the
service rate of a microservice, we assume that the service rate
remains independent. Thus, even if the queue is very long,
the service time remains identical. In case these assumptions
are too heavily violated, it is always possible to use a different
approximation technique in this approach. In fact, we represent
a microservice by the distribution characteristics of the arrival
rate and service time. Changing the distribution seems straight-
forward, but the distribution for the merged microservice



becomes non-trivial and requires different analysis based on
the chosen distributions.

Another possibility is to create a (discrete event) simulation
of the application. Based on the simulation, the required
metrics can be approximated, such as the utilization and mean
waiting time. However, simulations are typically computation-
ally more expensive, resulting in an increased computation
time of the genetic algorithm. Hence it is recommended to
keep the approximation as fast as possible.

D. Fitness Objectives

Based on the fields of Queueing Theory and Software
Module Clustering, several possible objectives were studied.

An important concept in queueing theory is the mean
sojourn time, defined as the total time a customer spends in the
system, i.e. the waiting and service time combined. The mean
sojourn time is directly related to the user perceived perfor-
mance of a microservice system. This is an important factor in
microservice architectures, as asynchronous messaging is used
between microservices to propagate changes. Additionally, if
the sojourn time becomes larger, a user is more likely to see
an inconsistent state of the system, by viewing data from
an internal feature instance that has not processed the latest
change yet. Hence, it is also desired to keep the sojourn time
as low as possible from a usability perspective. As the mean
waiting and service time are part of the sojourn time, these
objectives are not used individually.

Utilization, a measure of the used capacity, is another
central concept in queueing theory. Unused capacity is ba-
sically wasted money for organizations, hence they aim to
maximally use the available capacity. Common wisdom states
that a utilization between 60 and 80 percent is desired, as
capacity is then used efficiently and there is always capacity
to handle peaks in the workload. By combining features in a
microservice, the workload handled by a single microservice
increases, which increases the utilization of that microservice.
Hence this objective should be considered optimal when the
utilization is between 60 and 80 percent.

In Software Module Clustering, several objectives are used
to measure the fitness of a clustering of software mod-
ules [11][18]:
Maximize number of intra-edges Intra-edges are dependen-

cies within a cluster. A high number of intra-edges
indicates high cohesion.

Minimize number of inter-edges Inter-edges are dependen-
cies between clusters. A low number of inter-edges results
in low coupling.

Maximize cluster count To prevent a single huge cluster
containing all modules.

Minimize single module clusters To prevent every module
becoming its own cluster.

In the case of an (event-driven) microservice architecture,
inter-edges, i.e., edges between two microservices, do not ex-
ist, as these are resolved by adding internal feature instances to
satisfy the feature dependency graph. However, adding internal
feature instances results in data and code duplication, which in
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turn requires an increase in communication, as each feature re-
quest needs to be propagated to more internal feature instances
in different microservices. This results in increasing sojourn
times, as microservices have more propagated messages in
their queues. Furthermore duplication of features results in
reduced maintainability. Therefore, we should minimize the
number of internal feature instances.

As the latter two objectives, maximizing cluster count and
minimizing single module clusters, are already encoded in the
utilization and sojourn time, these were discarded in the fitness
objectives.

E. MicADO

To validate our approach, we created the open source
tool MicADO: the Microservice Architecture Deployment
Optimizer 1. An overview of the components of MicADO
is depicted in Figure 4. Blocks with a dotted line indicate
customer specific modules that can be overridden.

A technical representation of the described microservice
architecture model and a workload model are the input of
this tool. The workload model requires an application specific
adapter that produces the expected workload model. After
parsing these input models, they are passed to the genetic
algorithm.

Based on the objectives of the company, our fitness function
can be used, or a different fitness function can be implemented.
Finally the ‘Microservice Architecture model output module’
outputs the best deployment suggested by the genetic algo-
rithm.

Additionally, MicADO contains a web-based microservice
architecture model viewer that visualizes the suggested mi-
croservice architecture model.

V. CASE STUDY

A case study was performed to evaluate the feasibility of
the approach. This section describes the case study context
and the results.

1www.architecturemining.org/tools/micado
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A. Case Study Context

The case study was performed at AFAS. AFAS is a Dutch
vendor of ERP software. The privately held company currently
employs over 350 people and annually generates 100 million
of revenue. AFAS currently delivers a fully integrated ERP
suite which is used daily by more than 1.000.000 professional
users of more than 10.000 customers.

The NEXT version of AFAS’ ERP software is completely
generated, cloud-based, and tailored for a particular enterprise,
based on an ontological model of that enterprise. The onto-
logical enterprise model will be expressive enough to fully
describe the real-world enterprise of virtually any customer,
and as well form the main foundation for generating an entire
software suite on a cloud infrastructure platform of choice:
AFAS NEXT is entirely platform- and database-independent.
AFAS NEXT will enable rapid model-driven application de-
velopment and will drastically increase customization flexibil-
ity for AFAS’ partners and customers, based on a software
generation platform that is future proof for any upcoming
technologies.

B. The Architecture

Currently the generated architecture is an event driven
microservice architecture using Command and Query Respon-
sibility Segregation (CQRS) [8], and Event Sourcing [17]
running on Microsoft Service Fabric at the back-end, and a
HTML5 single page application as front-end. AFAS NEXT
supports the generation of different feature groupings at the
query side of its CQRS backend. The AFAS NEXT generation
pipeline was modified to support our microservice architecture
model as auxiliary input for the generation process. This
microservice architecture model is used to distribute the pro-
jectors over the microservices. Because of the ability to modify
the application generation process, it is possible to generate
many different groupings of features. This makes AFAS NEXT
a powerful environment for this research.

The applications ran on a five-node Service Fabric cluster,
running on virtual machines. The databases of the microser-
vices were stored on a dedicated database machine.

C. Microservice Architecture Model

The NEXT platform was used to create an application that
resembles a web-shop, depicted in Figure 5. It contains a
customer model element that enables visitors to create an
account. A customer represents a person and consists of an
email, password, default shipping address, and other personal
details. Secondly, the web-shop contains products, consisting
of product information and several technical properties. These
products can be reviewed by a customer, using the review
event. A customer can create orders, consisting of one or more
order lines containing an amount and a product. Furthermore
an order consists of a shipping address, by default the cus-
tomers’s default shipping address. Finally an order results in a
payment and a delivery. A delivery is an event that results in
goods leaving the organisation, requiring a payment in return
of the other party, as depicted by the properties of delivery in
Figure 5. A payment contains a dependency on the total price
of an order. The delivery is performed by a parcel service,
and uses the shipping address provided on the order.

These six model elements result in 27 features with a total of
238 properties and 72 dependency relations between features.
The maximal microservice architecture is used as a baseline
for the performance tests. The resulting microservice architec-
ture consists of 25 microservices, 27 public feature instances
and 55 internal feature instances, as shown in Figure 6(a). The
number inside a feature indicates of which model element it
originates. Features with a 1 or 2 originate from the sales order
model element. Features 3 to 6 are created as result of the
customer model element, and features 7 till 10 are the result
of the Delivery element. The parcel service model element
resulted in features 11 to 13. The review event resulted in
feature 14, while the product role resulted in 15 and 16. Finally
NEXT generates by default features 17 till 27, that were not
used in this workload.

D. Workload

We created an artificial workload, since AFAS NEXT is
still under development and not running in production. The
workload we created consists of a typical scenario for a web
shop. At first a user creates a shopping basket and adds several
products to it. When the customer is done shopping, he pays
for his order, and a delivery slip is created. Afterwards, some
users submit a review of the product.

E. Test setup

The tooling by Guelen [6] is used to generate the workload,
since this tooling is integrated with AFAS NEXT. Unfortu-
nately the tooling is currently not able to send a single request
and wait till the event has been processed by all projectors
on the query side. Since the steps in the workload require
the system to be consistent after every step, this scenario
had to be converted to a batch workload to circumvent this
limitation. This resulted in a phase for every step described
in the workload above, in which all concurrent users perform
that step. For example in the first phase all shopping carts are



created, followed by a second phase in which all products are
added to all shopping carts.

Since this workload is a burst process, which is not a
poisson distribution, we were unable to use our queueing
theory approximation and therefore, we created a simulation
model.

To evaluate MicADO, we created an AFAS specific metric
input module that derives both the workload and the per-
formance metrics from their software operation data. Based
on goals of AFAS, we decided to use two fitness objectives:
mean time till consistency with a weight of one, and feature
duplication with a weight of 0.2. Both objectives had to be
minimized. Furthermore the simulation was integrated in the
fitness function.

Before each performance test, base data is inserted in the
system, such as accounts and products. In this phase, 251
countries, 250 users, 1760 products and four parcel services
are created, that are used in the other phases of the perfor-
mance test.

Two variants of the workload described in the previous
subsection were used: the low and high variant. The low
variant simulates traffic representing only a few users. This
is done by running a single load generator thread that waits
uniformly between 50 and 200 milliseconds between each
request, i.e. the application has to handle between 5 and 20
requests per second. This tests is designed to determine a
good clustering of features for small customers. Since the
load on the system is low, the system should be immediately
consistent, and no significant queueing of requests should
occur.

The high variant simulates a busy day for the web-shop.
This is done by using ten load generators with the same
settings as in the low variant. As a result, the application has to
handle between 50 and 200 requests per second. The workload
should result in significant queueing occurring at most places
in the application. As a result of this queueing, the system will
require several minutes catch-up time to become consistent.

For both variants, five runs of the performance tests on
the maximal microservice architecture depicted in Figure 6(a)
were performed. Afterwards the run that is the closest to the
mean of the five runs was selected. This run was used as
input for MicADO, since the metric input module operates
directly on the metrics. The microservice architecture model
suggested by MicADO was used as input for the AFAS NEXT
generator. The regenerated application was redeployed, and the
performance tests were re-ran on this new architecture. The
following section discusses the results for the low and high
workload scenarios.

F. Results

1) Low Workload Scenario: The performance test results
of the maximal deployment for this scenario are shown in the
left part of Table IV. Each row in this table represents one
of the phases of the workload. The time column denotes the
total time in seconds it took the system handle this workload
and become consistent. The ‘avg. requests’ column denotes
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Fig. 6: Different microservice architectures for the feature
model depicted in Figure 5

the mean number of requests the system handled per second.
Note that a lower time is better, whereas a high number of
average requests per seconds is better.

The metrics emitted during this test run were used as input
for the MicADO tool. MicADO recommends to merge all
features in a single microservice, resulting in a microservice
containing 27 public feature instances with zero duplication,
as shown in Figure 6(b). According to the simulation this
should reduce the mean time till consistency from 183 to 62



milliseconds, while reducing the number of internal features
instances from 55 to zero.

The results of the performance tests on the deployment
based on the suggestion of MicADO are shown in the right
part of Table IV. It should be noted that the time of all phases
of the performance test were completed in less time than the
initial microservice architecture. Secondly the mean number
of requests per seconds is higher for every phase.

TABLE IV: Performance test results for the low workload
variant, before and after optimization with MicADO and
redeployment of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (600) 131 4.56 104 5.75
Article (1200) 270 4.44 208 5.74
Payment (600) 132 4.53 104 5.53
Delivery (600) 126 4.74 108 5.53
Review (500) 108 4.61 89 5.58

2) High Workload Scenario: The results of the high work-
load scenario performance test on the maximal deployment
are shown in the left part of Table V. This table has the same
layout as Table IV, the table denoting the results for the low
workload scenario.

Based on the metrics that were emitted during the run,
MicADO recommends the deployment shown in Figure 6. This
microservice architecture consists of eleven microservices,
with a total of 39 duplicated internal feature instances. As can
be seen in Figure 6, several microservices have been merged.
According to the simulation performed by MicADO, the mean
time till consistency increases from 1584 milliseconds to 1612
milliseconds. These numbers indicate that the full parallel
processing capacity of the maximal deployment is fully used
to handle this workload.

The application was again regenerated and redeployed based
on the deployment suggested by MicADO. The results of the
performance test performed on this architecture are shown in
Table V. The results of these tests were close to the initial
deployment, as shown in Table V, however with a much lower
number of internal feature instances.

G. Case Study Evaluation

In case of the first workload scenario, the total time of the
performance test is reduced with 20% and the throughput of
the system increased with 23% on average. Hence MicADO
was able to substantially improve the performance of the

TABLE V: Performance test results for the high traffic variant,
before and after optimization with MicADO and redeployment
of the Microservice Architecture.

Test phase Initial MSA Optimized MSA
(# requests) Time (s) Avg. requests/s Time (s) Avg. requests/s

Order (6000) 130 45.83 121 49.30
Article (12000) 237 50.55 230 52.06
Payment (6000) 115 51.88 117 50.96
Delivery (6000) 118 50.60 116 51.43
Review (5000) 66 52.98 69 51.51

application. Since this scenario only puts a low workload on
the system, a single microservice is able to process all requests
without large waiting times. For this workload the overhead
of processing every request multiple times by different mi-
croservices is larger than the benefits gained by the increased
parallel processing.

In the high workload scenario, the performance could not be
improved substantially, but the second objective of the fitness
function, the duplication of feature instances, could be reduced
with 30%, from 55 to 39. As indicated by the simulation, the
full parallel processing capacity of the application is required
to handle the high workload. Combining several microservices
that contain the same internal feature instances, resulted in
an substantial decrease of the duplication, without a negative
impact on the performance.

The two scenarios show that the different scenarios result
in totally different deployments, which both were able to
substantially improve the overall fitness of the deployment for
the defined fitness goals, given the respective workloads.

VI. CONCLUSIONS AND FUTURE WORK

This paper contributes to the research on microservices in
several ways. First, a formal notation to model microservice
architectures is proposed. Based on this model, modification
operators on microservices are defined. Secondly, an approach
is proposed to optimize the performance of a microservice
architecture given its workload. This approach has two main
components as input: a microservice architecture model and a
workload with corresponding performance metrics. A genetic
algorithm searches for deployments having a better perfor-
mance for the provided workload. Since an actual execution
of the workload on a deployment is computationally expensive,
an approximation using queueing networks with multiple
customer classes is proposed as fitness function. The third
contribution is the creation of MicADO, an open source tool,
in which we implemented the proposed approach, that can be
used to easily implement the proposed approach in practice.

Finally a case study was performed to evaluate the proposed
approach and MicADO. Results of the case study show that
in this case a performance improvement up to 20% was
obtained. As the results stem from a single case study, we
cannot generalize these results, but the case study shows the
importance of an approach that takes performance metrics into
account when determining the size of microservices.

Based on this research, we see many opportunities for future
work. Further research into the robustness of the genetic algo-
rithm is required, such as robustness against small variations
in workload, and reducing the effect of non-determinism in the
algorithm. More case studies are essential to further optimize
our approach, preferably with a real production workload, to
confirm the outcome of our research.

There are many ways of defining optimality for microser-
vices, performance and data-duplication are just two of a
plethora of possibilities. Additional objectives, such as avail-
ability, security and maintainability require new research and



case studies. Furthermore, we believe that patterns in the
workload can be exploited to improve the feature clustering.

Further research into efficient approximations of workloads
is essential, since simulations are time consuming and are not
flawless as shown in our case study. The approach in this paper
has the potential to support self-optimizing architectures. We
envision this by automating the feedback loop and generation
of new microservice architectures based on the current and
expected workload workload of the system.
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