
A Blockchain-Based Micro Economy Platform
for Distributed Infrastructure Initiatives

Jan Kramer∗†, Jan Martijn E. M. van der Werf∗, Johan Stokking†, and Marcela Ruiz∗
∗Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands

Email: {j.m.e.m.vanderwerf, m.ruiz}@uu.nl
†The Things Network, Rigakade 10, 1013 BC Amsterdam, the Netherlands

Email: jan@jankramer.eu, johan@thethingsnetwork.org

Abstract—Distributed Infrastructure Initiatives (DIIs) are
communities that collaboratively produce and consume infras-
tructure. To develop a healthy ecosystem, DIIs require an
economic model that balances supply and demand, but there is
currently a lack of tooling to support implementing these. In this
research, we propose an architecture for a platform that enables
DIIs to implement such models, focused around a digital currency
based on blockchain technology. The currency is issued according
to the amount participants contribute to the initiative, which
is quantified based on operational metrics gathered from the
infrastructure. Furthermore, the platform enables participants to
deploy smart contracts which encode self-enforcing agreements
about the infrastructure services they exchange. The architecture
has been evaluated through a case study at TTN a global
distributed crowdsourced Internet of Things initiative. The case
study revealed that the architecture is effective for the selected
case at TTN. In addition, the results motivate future research
lines to support scalability (i.e., to deploy the architecture on a
larger scale) and security.

Keywords—Software architecture, blockchain, smart contract,
digital currency, reward system.

I. INTRODUCTION

In recent years, our attitudes towards consumption and
production have shifted towards a more distributed, peer-to-
peer and sharing economic model [1]. Examples of drivers
for this shift include globalization and the consumerization
of digital technologies [2]. However, while platforms such
as Airbnb, Kickstarter, and Etsy are indeed based around a
peer-to-peer economy, they are still fully dependent on central
organizations to manage their platforms. In the utopia of a
true peer-to-peer economy, these dependencies would also be
eliminated and replaced by a fully distributed alternative.

In addition to consumer goods and services, it is also
possible to produce infrastructural services in a decentralized
manner, as shown by The Things Network (TTN), a global,
distributed, crowdsourced Internet of Things network initia-
tive [3]. To refer to this type of initiative, we define the
term Distributed Infrastructure Initiative (DII) as a group of
individuals and organizations that cooperatively produce and
consume a shared set of infrastructure services, without a
centralized governance body.

A notable attribute of DIIs is that the participants them-
selves are tasked with producing the infrastructure, whereas
traditionally, corporations such as telecom operators bear this
responsibility. While corporations are incentivized by profits to
produce the infrastructure, in DIIs there is no built-in incentive

for participants to produce beyond their own need, especially
in situations where the infrastructure is offered free of charge.
Therefore, our main research question is: How to reinforce the
participation in DIIs, and support a stable supply and demand
in DDIs?

We propose a platform specific for DIIs to encourage
participation by means of a rewarding system [4]. However,
while there is a vast body of literature on related topics such
as reward systems, We observe little practical tooling to enable
DIIs develop such micro economies.

In this paper we present the design and evaluation of a
software architecture that provides the tools to operationalise
an economic model to encourage the particpants of DIIs.
The economic model is based on a rewarding system to
mitigate the uncertainties of current donation and need-based
approaches. To achieve a fully decentralised architecture, we
make use of the blockchain technology; which facilitates the
specification of distributed ledgers, and a core logic by using
smart contracts. For the evaluation, we conduct a case study
in the context of a real DII at TTN.

The remainder of this paper is structured as follows.
Section II provides some background on distributed ledger
technology which is applied in the micro economy platform
introduced in Section III. The case study is described in
Section IV, and in Section V we discuss the findings of
our research. Finally, Section VI concludes this paper and
describes several areas for future research.

II. BACKGROUND

A. Distributed Ledgers

Distributed ledgers are an emergent topic and have received
a lot of attention recently due to the popularization of the
concept of blockchain and its use in digital currencies such as
Bitcoin. Essentially, a distributed ledger is a replicated, shared
and distributed database which enables consensus between
parties that do not trust each other [5]. The database consists of
an append-only sequence of immutable transactions. As such,
once a transaction has been confirmed, it is not possible to
modify it. This makes it very suitable for applications which
need a tamper-resistant data store, e.g. digital currencies or the
micro economy platform we propose in this research.

A blockchain is a specific type of distributed ledger which
groups transactions in blocks that are organized in a linked
list, i.e. a chain of blocks. Blocks are brought into existence by



participants of the network through a process called “mining”.
Mining is intentionally made expensive so that it is economi-
cally infeasible for participants to forge data in order to gain
an advantage. As such, mining can be used as a decentralized
consensus mechanism. The actual implementation of consensus
mechanisms differs between various types of ledgers, which is
discussed in more detail in Section II-B.

Note that the term ‘blockchain’ is overloaded and can
be referred to as either the generic architectural pattern that
was popularized by its application in the digital peer-to-peer
currency Bitcoin [6], or to the actual instantiation of the pattern
as applied in projects such as Bitcoin and Ethereum [7]. For
the purpose of this research, we are mainly interested in the
generic architectural pattern of a distributed ledger.

B. Consensus Mechanisms

The consensus mechanism is core to a distributed ledger
given that it provides its primary function: reaching consensus
between parties about the “true” state of the ledger. The first
ledger that was popularized, the Bitcoin blockchain, uses a
Proof-of-Work (Pow) consensus mechanism [6]. PoW relies on
participants continuously competing to solve puzzles, where
the solution of each puzzle represents the missing piece of the
next block. Since this process is computationally intensive,
finding the next block and hence defining the upcoming state
of the blockchain is expensive. Under the assumption that there
is not a single party that operates more than half of the total
mining resources, it is not possible for a single party to record
false transactions, e.g. to double spend tokens.

The puzzle that is solved can have many forms. In the case
of most digital currencies it consists of finding a hash that
satisfies a specific property, i.e. the first n-bytes of the hash
must be 0, where n represents the difficulty of the problem.
For example, if the input data derived from the transactions is
“0x1234” and n equals 2, then the puzzle is to find a value for
i where the hash over “0x1234i” starts with “0x00...”. While
it is computationally intensive to find a correct hash, it is very
easy to verify whether a hash is correct. This makes it very
suitable as a means for other nodes to validate new blocks
from other nodes.

One of the main drawbacks of the PoW approach is that the
computations require a significant amount of energy resources.
Some researchers estimate that a PoW network at scale would
incur a 2.1% increase in carbon dioxide emissions world-
wide [8]. Alternative approaches that do not incur a severe
pressure on the environment include Proof-of-Space [9]–[11],
which is based on miners providing disk space instead of
computational resources, Proof-of-Stake [12], where miners
have to put up a deposit – or stake – that can be burnt if they
misbehave, and finally Proof-of-Authority, where a consortium
of trusted parties is chosen upfront that are allowed to mine
new blocks. While partially decentralized, this approach is not
as open, given that not every participant can arbitrarily start
mining.

C. Smart Contracts

Another aspect that varies across distributed ledgers is
whether they support smart contracts. While popularized by
Ethereum [13], Smart Contracts were actually first defined

in [14]. A smart contract can be defined as the formalization of
an agreement over a public network between parties that do not
necessarily trust each other. It consists of promises that can be
executed automatically, based on future inputs. The automatic
execution allows anonymous parties to engage in transactions
without a trusted third party being present. Examples of use
cases include crowdfunding, content rights management, and
escrow services.

In Ethereum, smart contracts are executed as part of
transactions on the Ethereum Virtual Machine (EVM), a quasi-
Turing-complete virtual state machine [7], [13]. The quasi-
qualifier stems from the fact that transactions are limited
by the amount of gas the sender provided to execute the
transaction. Gas is a measure for the computational size of
a transaction, and is consumed by every instruction the EVM
executes (e.g. performing a calculation or writing/reading to or
from permanent storage). Therefore, a sender has to provide
sufficient gas for every step to execute. Since gas is provided
by supplying additional Ether to the transaction, which has a
real-world cost, this mechanism provides a safeguard against
very large or inefficient transactions on the EVM.

D. Blockchain-Free Distributed Ledgers

Although the term ‘blockchain’ has been popularized, a
more correct term for most use cases would be distributed
ledger, since using a blockchain as data structure is merely
an implementation detail of a system that tries to provide
consensus in a trustless distributed setting. The fact that several
other projects [15]–[17] have proposed an alternative data
structure to store transactions supports this claim.

For example, IOTA uses a Directed Acyclic Graph (DAG)
instead of a blockchain [17]. Each node in the DAG represents
a transaction and each edge a reference to an earlier trans-
action. In order to publish new transactions on the network,
a user has to perform PoW that includes data from the
earlier transactions. By providing the PoW and publishing the
transaction, the previous transactions are verified. Note that
instead of depending on a separate group of miners, in IOTA,
the users who engage in transactions verify transactions of
other users. Therefore, IOTA also does not have transaction
fees as in Bitcoin and Ethereum, although performing the
PoW is computationally intensive and could be considered as
implicit transaction costs.

One of the main benefits of this approach is scalability.
In a blockchain-based ledger, every transaction has to be
processed in order by every node since there is a single
sequence of transactions. Due to its structure, a DAG-based
ledger allows the network to temporarily diverge and therefore
accept transactions asynchronously, which in turn leads to
higher throughput.

However, at the time of writing, the distributed ledgers built
using alternative data structures are still relatively immature
and have to be validated by large scale real world usage.

III. MICRO ECONOMY PLATFORM

The main purpose of the micro economy platform proposed
in this research is to enable DIIs incentivize their participants
to contribute to a shared infrastructure. It aims to provide these



incentives through a micro economy where participants can
earn tokens in a DII-specific currency by contributing to the
infrastructure. Additionally, participants can use the currency
to exchange additional services with each other.

In principle, every participant of the DII is a potential
stakeholder in the system. Participants can be both orga-
nizations as well as individuals, and among them we can
distinguish two types. First, contributors are participants who
add value by contributing to the infrastructure. Second, users
are participants that utilize the infrastructure. These two types
are not mutually exclusive, i.e. a participant can simultaneously
be a contributor and a user. Finally, a potential third group of
stakeholders are investors. Since the platform introduces an
asset that represents some value and can be exchanged freely,
it is possible that the asset attracts investors similar as to how
investors hold Bitcoin and other digital currencies.

From a technical perspective, at the core of the DII is the
infrastructure which consists of components that collect data
about their operations, e.g. performance metrics or statistics
about the amount of usage. This will form the basis for the
integration with the proposed platform, as discussed in the next
sections.

A. Requirements

The following functional (FR) and non-functional (NFR)
requirements describe the features the platform should provide.

FR1 – Contributor ranking In order to reward contribu-
tions, we must know how much to reward and hence need to
quantify a user’s contributions. To that end, we introduce the
concept of a Karma score, which is based on the metrics the
platform collects from infrastructure components. The Karma
score should be computed roughly along the following lines:

1) Infrastructure components continuously submit met-
rics to the platform;

2) Periodically (e.g. hourly), these metrics are aggre-
gated per component, and converted to a single score
using a function that is configurable per component
type;

3) Based on the past n scores, per component a moving
average is computed;

4) The overall Karma score of a participant is finally
computed as the sum of the moving averages of all
individual component scores.

FR2 – Issue tokens At each interval, after the Karma
scores have been computed, the platform should issue a fixed
number of new tokens in the DII-specific currency, Wavelets
in the context of The Things Network. The tokens should
be distributed to all contributors, proportional to their Karma
scores.

1) After all Karma scores have been updated, compute
the number of tokens to issue to every contributor by
calculating their percentage of Karma and multiply
that with the fixed total reward;

2) Issue the computed number of tokens to the contrib-
utors’ wallets.

FR3 – Set up wallet To start receiving tokens, a participant
needs to set up a wallet which is linked to a user account in
the existing infrastructure:

1) The participant initializes a new wallet (client-side);
2) The participant sends a request to the platform to link

the address of the wallet to the user account in the
exiting infrastructure;

3) The platform requests the participant to follow an
authorization flow to verify the participant’s identity;

4) Only on successful authorization, the wallet address
is linked to the user account.

FR4 – Exchange tokens

To allow participants freely exchange tokens of the DII-
specific currency, the platform needs to support arbitrary
transactions between wallets:

1) A participant with wallet address a issues a request
to send n tokens to a given address b;

2) The platform checks whether the participant has
enough tokens of the DII-specific currency;

3) If that is the case, the platform decreases the balance
of the wallet with address a with n tokens, and
increases the balance of the wallet with address b
with n tokens.

FR5 – Marketplace

To enable participants set up self-enforcing agreements
about network services and their usage, the platform should
allow participants to deploy contracts that are executed pe-
riodically with aggregated network metrics, and can hold
and transfer tokens. An example of such contract is further
described in Section III-D2. To enable participants discover
such offerings, the services should be listed in a marketplace:

1) A participant defines and deploys a smart contract
on the platform which implements an interface that
receives network metrics and executes arbitrary logic;

2) After the smart contract is deployed, the participant
adds the service to the market place;

3) A participant interested in the service subscribes by
making the required payment to the smart contract;

4) Periodically, when the smart contract is invoked, the
predefined logic is executed;

5) The seller can discontinue the contract, which will
trigger its removal from the marketplace and shut
down the contract after a predefined period of notice;

NFR1 – Efficient Batch Handling The platform processes
metrics in batches, and therefore the running time of a single
batch should not exceed the interval between batches. An
important factor to the running time is the number of metrics to
be processed, which is dependent on the number of infrastruc-
ture components. While for the initial proof of concept, this
number is relatively small, i.e. in the order of magnitude of
several thousands, the platform should be able to scale towards
hundreds of thousands of components.

NFR2 – Distributed Deployment One of the strengths of
DIIs is that they do not have a central authority. However,
this also means that they lack a single party they entrust with
managing the state of the micro economy platform. Therefore,
the platform needs to be operated in a distributed fashion by
different parties.

NFR3 – Security Since DIIs are open for anyone to join,
this does not exclude malicious actors. Especially due to the



Fig. 1. Context diagram of micro economy platform

fact that the platform can be used for economic gains, it is
essential that there are safeguards in place that protect benev-
olent participants from attacks of participants with malignant
intents.

B. Architecture

Following the requirements, we describe the architecture
from several viewpoints based on the method described in [18].

1) Context: Figure 1 shows the micro economy platform
as a black box in its context. In essence, it fulfills the fol-
lowing tasks. First, it accepts metrics about the infrastructure
operations. Additionally, it exposes an authentication endpoint
to link user accounts between the two systems. Second,
based on the infrastructure metrics, contributors are rewarded
with tokens, which can be exchanged with other participants.
Third, the platform offers participants the ability to engage
in smart contracts, e.g. an SLA as discussed in more detail
in Section III-D2. Finally, a third group of outside actors,
investors, might exchange tokens with participants without
actively participating in the network.

The economic model employed by the micro economy
platform is summarized in Figure 2. Fundamental to the model
is the token reserve, a smart contract that holds and manages
the tokens that are in circulation. It is also the only element
that is able to issue new tokens, and therefore can be compared
to a central bank.

The token reserve periodically issues a mining revenue.
On a periodic basis, e.g., an hourly schedule, a fixed number
of tokens is created and subsequently divided over all con-
tributors, proportional to the size of their contributions. This
process is analogous to mining in PoW-based cryptocurrencies,
but instead of hashing power, this model allows any service or
good to count as a contribution, as long as it can ultimately
be quantified.

Another potential source of tokens for contributors is a
marketplace where they can offer specific services to users.
For example, a gateway owner could offer guarantees on a
particular service level (e.g. 99.99% uptime) through an SLA,
in exchange for a number of tokens per time unit. To prevent

Fig. 2. Economic model as applied in the micro economy platform

the gateway owner from violating the agreement, a possible
penalty could be burning a pre-deposited amount of tokens.
Given that the infrastructure already provides metrics to the
platform, the contract could even be made self-enforcing by
evaluating these metrics against predefined conditions. This
example is discussed in more detail in Section III-D2. Note that
this is just one example of a possible smart contract between
network participants. Additionally, since smart contracts are
essentially programs that can be submitted to the blockchain by
any participant, anyone could define their own smart contracts
in which they can record self-enforcing agreements with other
participants.

Finally, as we have seen with other digital currencies, it
is possible that the tokens attract investors who then start
trading the token. By trading against other digital currencies or
fiat, the token will gain value in the real world, which allows
contributors and users to put an actual price on their services
and contributions.

C. Functional Structure

The high-level platform design is depicted in Figure 3 by
listing the main platform components and their relationships.

Infrastructure components are instrumented to submit per-
formance and usage metrics to a monitor. The monitor sub-
sequently stores the metrics temporarily. On a periodic basis,
the batch controller triggers all monitors to submit their aggre-
gated metrics to the infrastructure metric store. The platform
aggregates the metrics to improve scalability, since storing
every individual metric would cause a significant overhead.

Since the metrics have to be provided by an external source,
it is important that we are able to trust the agent providing
the metrics. In order to accomplish this, the DII only accepts
data originating from known infrastructure components and
monitors, which are registered in the whitelist.



Fig. 3. High-level platform structure. Implemented components are high-
lighted (e.g. Monitor)

Based on the metrics, the karma component calculates a
score for all participants that represent the significance of
their contributions. Based on this score, the token reserve
issues a number of tokens to the contributors wallets following
requirement FR2.

The directory keeps track of the mapping between contrib-
utors and their wallet addresses, which is necessary to know
where to issue new tokens. To register a wallet address, new
participants have to perform a one-time action where they
link their address to their infrastructure user account following
requirement FR3.

Finally, participants can use their tokens to purchase ser-
vices from other participants in a marketplace.

D. Information Flow

An important aspect in the market place are the token
reward workflow and the way users can define SLAs.

1) Token Reward Workflow: Figure 4 shows in more detail
how the token reward process as previously mentioned is
executed by the various components.

Infrastructure components continuously report metrics
about the usage and performance of the infrastructure to
a monitor, which stores it in a temporary event store. On
a predefined interval, e.g. hourly, one of the authoritative
agents signals the monitors to start their batch process, which
queries the event store and submits aggregated metrics to the
infrastructure metrics contract on the blockchain. This contract
subsequently performs various checks, before actually storing
the metrics. Firstly it ensures that the source of the metrics is
in fact allowed to submit metrics, and it verifies that the batch
has not been sealed yet, which would mean the time window
to submit the metrics had expired.

Note that some precision is lost by aggregating the metrics,
but storing every metric separately would be unfeasible due to
constraints in throughput and storage.

As soon as the finalization process is triggered, the batch
is sealed by the metrics contract, and the registered batch
listeners are triggered. An example of such listener is the
Karma contract, which updates the karma scores of the users
based on the newly added metrics, and calculates the token
rewards that are to be distributed. Other examples could be
user-defined contracts which also depend on metrics to execute
their logic. An example of such contract is given in the next
section.

Fig. 4. Token reward workflow

2) User Defined SLA Workflow: Figure 5 describes how a
user defined SLA could work in practice. It would ultimately
be up to users themselves to define these contracts, although
the platform could provide template contracts.

In this example, the contract starts with a contributor
deploying a SLA smart contract. The contract contains some
parameters, e.g. an uptime percentage and a price per month.
The contract subsequently registers itself as a listener for
new metrics with the infrastructure metrics contract, and the
contributor adds the service to a marketplace through which
users can subscribe. A subscription is started when a user
deposits its first payment, which is kept in escrow by the SLA
contract.

Then, on every batch, the SLA contract receives a signal
and queries the infrastructure metrics component for the rele-
vant metrics. If the metrics meet the pre-configured criteria
then the contract pays out the tokens from all active sub-
scribers for the current cycle to the contributor, and disables
the subscriptions which do not have sufficient funds left to
pay for another cycle. In case the metrics do not meet the
pre-configured criteria, the remaining tokens are returned to



Fig. 5. User defined SLA workflow

the users and the subscriptions are cancelled. Finally, the
reputation of the contributor is updated either positively or
negatively depending on the SLA outcome. The reputation is
shown on the marketplace and can provide users with insight
in the historical performance of the selling contributors.

Ultimately, a contributor can choose to sunset its service
which entails removing it from the marketplace and shutting
down the contract. This will unregister the listener and self-
destruct the service. Any remaining tokens in escrow are
returned to the users.

E. Runtime Environment

Figure 6 depicts the runtime environment of the various
platform components. Central to this view is the blockchain,
which is represented as a logical component deployed on
multiple physical nodes. Most of the platform modules are
in fact deployed as smart contracts on this blockchain, since
they operate on state that has to be shared across many nodes
that lack a fully trusting relationship. All interaction with these
smart contracts is performed through blockchain clients, which
is the third party software that runs the blockchain. Note that
the term client does not refer to the client–server architectural
pattern. Instead, the blockchain is a peer-to-peer network and
the client is used to operate a node in this network.

While all nodes participate in the blockchain network, only
the authoritative nodes are allowed to validate transactions and
issue new blocks. In addition to validating new blocks, they
host the identity bridge module, which provides integration

with the identity provider (i.e. user directory) of the existing
infrastructure. The identity bridge must be deployed on trusted
nodes, because the platform needs to securely verify the
identity of participants, and the authoritative nodes are the
only nodes that can be fully trusted. The authorities are chosen
during the initial set-up of the blockchain by putting their
addresses in the blockchain configuration. This configuration is
subsequently shared among all authorities and must be used to
successfully join the blockchain network. At a later stage, if a
new authority wants to join or an existing authority must leave,
a majority of the authorities must update their configuration,
after which the new list becomes active.

Each monitor is deployed on a contributor node. Since
the number of infrastructure components can grow beyond
the number a single monitor can handle, the monitors should
scale horizontally. Each monitor instance also has an event
store which is a simple database that is used as a buffer to
temporarily store metrics until they have been submitted to
the infrastructure metrics store.

Finally, the wallet software is client-side which is necessary
to keep the platform distributed and hence runs on every user’s
own device. Similar to the identity bridge and monitor, it
communicates with the rest of the blockchain network through
a blockchain client.

Fig. 6. Runtime environment

IV. CASE STUDY

To evaluate the proposed architecture, we conducted a
case study at TTN. Figure 7 depicts the typical usage of the
IoT network infrastructure provided by TTN. The sequence
is triggered by an IoT device (e.g. a sensor) transmitting
an uplink message (1) which is received by zero or more
gateways. Each gateway forwards the message to the router it is
connected to (2), which in turn routes the message to a broker
(3). The broker subsequently deduplicates the set of received
messages belonging together, does a lookup to determine the
application the message belongs to, and forwards the message
to the corresponding handler (4). The handler then decrypts



Fig. 7. Typical usage scenario of The Things Network

and decodes the payload and publishes the message to the
application (5).

In case the application has scheduled a downlink (6)
message, the handler encodes and encrypts the corresponding
payload and sends it to the broker (7) which forwards it to
the router that is connected to the gateway that has been
selected as the best downlink option based on signal strength
and utilization (8). Finally, the router schedules the downlink
for the selected gateway (9) which transmits the message to
the device (10).

As the usage scenario shows, there are many roles involved
in using and operating the infrastructure. The gateway operator
has to purchase a gateway, install it at a proper location
(e.g. high altitude, outside, etc.) and provide it with electric-
ity and internet connectivity. The routing service providers
(router/broker/handler operators) have to operate a server that
runs the TTN backend components and make sure everything
is kept healthy and up to date. In short, these roles “deposit”
value by contributing infrastructure, whereas, application own-
ers only use the network and thereby “withdraw” value.

A. Proof-of-Concept Implementation

In order to validate the design of the architecture, we
developed a proof-of-concept (PoC) of the micro economy
platform. The PoC does not implement the full architecture,
but is restricted to a subset of components that we deemed
necessary to validate the essential aspects of the concept.

The gray components in Figure 3 have been implemented,
the others have been omitted in the PoC. In essence, the PoC
consists of two high-level components. The first component
being a blockchain implementation with on top a set of smart
contracts, and secondly an integration agent that links the
blockchain and existing infrastructure.

1) Integration Agent: The monitor and identity bridge
components have been developed in one software component,
the integration agent, for ease of development and deployment.
The main responsibility of the monitor is ensuring operational
metrics are collected and submitted to the rest of the micro
economy platform. Secondly, the identity bridge provides the

integration of the existing user base with the blockchain user
infrastructure.

Fig. 8. Monitor implementation

Monitor Figure 8 depicts a more detailed view of the imple-
mented monitor. Given that in the context of TTN infrastruc-
ture components already expose data over gRPC1 streams, and
bindings for these streams are available in the Go programming
language2, we chose to implement a gRPC server in Go. The
infrastructure components are configured to send events about
their operation to the monitor, which are then temporarily
stored as measurements in InfluxDB3, a time-series database. A
time-series database, and specifically InfluxDB, is appropriate
here, since it allows for easy aggregation over time and has
built-in support for retention policies to automatically discard
old data.

The batch process that submits the aggregated metrics
to the blockchain runs in a separate thread parallel to the
gRPC server. This process is triggered on an hourly basis,
and aggregates the number of messages and total airtime, i.e.
the duration of the gateway being active to send or receive
a message, over the previous period through a query on the
InfluxDB data store.

Note that even though we have only deployed a single
monitor in the current proof-of-concept, the architecture pre-
scribes that ultimately many monitors are deployed and they
all collect and report metrics. This is necessary to distribute the
load when more infrastructure components join the network,
but also introduces the need for an additional component that
coordinates the various monitors. This task is delegated to the
batch controller, which has been omitted in the PoC.

Identity Bridge Both the existing infrastructure and
blockchain have their own security system. Since we need to
identify users according to their TTN credentials, for example
to know where to send rewards, we need to provide an
integration between the two systems.

The TTN security system is a bespoke software component,
but is based on standard protocols and offers integration facil-
ities through OAuth. The blockchain has, due to its distributed
nature, a slightly different approach to security based on public
key cryptography. Users need to generate a wallet, which in
essence is a private key. To submit transactions from that
wallet, a user needs to sign the transaction using the private
key, and only with a proper signature will the transaction be
accepted by other blockchain nodes.

As depicted in Figure 9, to integrate the two systems,
the identity bridge component requests users to follow the
OAuth flow of the TTN security system, and subsequently
provide their wallet address. The identity bridge then registers

1See https://grpc.io/about/
2See https://golang.org/
3See https://github.com/influxdata/influxdb



the username-address combination on the blockchain in the
Directory contract, after which the identification procedure is
finished.

Fig. 9. Sequence diagram of wallet registration

2) Blockchain: Most of the core functionality has been im-
plemented through smart contracts on the private blockchain.
There are two concepts of importance here: the underlying
blockchain itself, i.e. the infrastructure, and the smart contracts
we implemented on top.

Ethereum implementation Although there are many differ-
ent blockchain technologies available, for this PoC we opted
for a private Ethereum instance. Our main reason to choose
Ethereum is its ability to deploy and execute smart contracts
that contain arbitrary logic through the Ethereum Virtual
Machine (EVM). Smart contracts for Ethereum are written
in Solidity, a strongly typed language of which the syntax
closely resembles those of general purpose languages such as
Java and C#. Solidity is compiled to EVM-specific bytecode,
so in theory, other languages could be developed to build
smart contracts for EVM-enabled blockchains. An example of
a smart contract implementing the tokens exchanged between
participants is shown in Figure IV-A2.

A smart contract in Solidity is similar to the concept of
a class, i.e. it has a constructor, methods and properties. De-
ploying a smart contract subsequently resembles instantiating a
class, and consists of compiling the contract to EVM bytecode
and attaching it to a transaction. When the contract has been
deployed, i.e. the next block is mined, the smart contract is
assigned a unique address. Read operations on a smart contract
can occur without any transactions. One has to simply inspect
the state of the blockchain at the address where the smart
contract is deployed. However, when performing operations
that manipulate the state of a smart contract, one needs to send
a transaction to the smart contract with the operation encoded
in bytecode.

Instead of using the public Ethereum chain, the PoC uses a
private instance. A deployment on the public blockchain would
not be cost-effective, since storing a relative high amount of
data is expensive, i.e. in the order of magnitude of hundreds or
thousands of USD per hour. Additionally, by having a private
blockchain, we have more control over the configuration and
are thereby able to tune parameters such as block time to
maximize the performance for our specific case, which would
not be possible in a public blockchain.

Figure 11 depicts the actually implemented smart contracts
as a simplified UML class diagram. The full implementation
can be found in [19].

contract Token {
address owner;
mapping(address => uint) balances;

function Token() {
// ‘msg.sender‘: user deploying the contract
owner = msg.sender;

}
// Issue new token
function create(address recipient, uint amount) {

// Only allowed by the owner of the token contract
if (msg.sender != owner) { throw; }
balances[recipient] += amount;

}
// Transfer tokens to another user
function transfer(address to, uint amount) {

if (balances[msg.sender] < amount) { throw; }
balances[msg.sender] -= amount;
balances[to] += amount;

}
}

Fig. 10. Example of smart contract in Solidity

Fig. 11. Overview of smart contracts and their relationships

Although the architecture suggest a separation between the
Karma and Infrastructure Metrics Store contracts (cf Figure 3),
the functionality of both contracts has been implemented in
the Karma contract for the purpose of this PoC. The main
reason was to reduce cross-contract communication, which
made it both easier to implement as well as resulted in better
performance. The reward flow, as previously described in
Section III-D1, therefore concretely looks as follows.

First, from the monitor, new metrics are submitted to the
Karma contract. Since every component type is different and
hence has different sets of metrics, the Karma contract accepts
an integer array of arbitrary length as input. For example, for
a gateway, the metrics consist of the number of messages and
total airtime, e.g. [2, 100, 3, 180] for “2 uplink messages,
100ms uplink airtime, 3 downlink messages, 180ms downlink
airtime”. Although currently not implemented, the metrics
for a router would most likely not contain the airtime, but
instead something that would be more representative of its
performance such as average latency and uptime.

Secondly, we need to compute a single Karma score for
every component, regardless of the types of metrics we receive.
For this, we define a Karma Scorer interface, which takes
as input an arbitrary set of metrics and outputs a single
Karma score. For the PoC, only a GatewayScorer has been
implemented. Due to the common interface it should be trivial
to add support for other component types. The GatewayScorer
implementation defines a number of tiers based on the amount
of airtime a gateway has processed, where more airtime
indicates a larger contribution and hence a higher reward.



After the Karma score has been calculated, the overall
current Karma score of both the component and subsequently
the user have to be updated given that they are moving averages
of previous n periods. Finally, after the metrics have been
updated and the batch finalization is initiated, the rewards are
’mined’ and issued to all contributing participants. This entails
calculating the total reward, and subsequently dividing a fixed
number of Wavelets proportionally over the contributors.

B. Analysis

By implementing and deploying the PoC, we were able
to analyze the architecture from a performance and security
perspective.

1) Performance: The implementation of the PoC shows
that the performance of the architecture is limited by the
current use of a blockchain. Notably, a large share of the active
running time is spent on submitting metrics to the blockchain.

We measured the time the PoC required to process a single
batch by logging timestamps at various stages in the batch:
1) at the start, 2) after the metrics are aggregated, 3) after
the metrics are submitted, and 4) after the batch is finalized.
Figure 4 has been annotated to highlight the exact steps the
stages encompass. The measurements were conducted during a
24-hour period, so in total 24 runs were measured. The number
of infrastructure components active during this period ranged
from 2,010 to 2,082. On average, a single run took 20 minutes
and 23 seconds (SD = 5:05), of which 94.71% of the time was
spent submitting metrics to the blockchain, 5.24% finalizing
the batches, and only 0.05% aggregating the metrics.

Since the interval between batches is one hour, there is not
much headroom to scale up in terms of number of tracked
infrastructure components.

2) Storage: In addition to the computational time, another
constraint is storage. After circa two months of running, the
total storage required for a single node amounts to roughly
40GiB, and it will increase only more over time. Although
the smart contracts only store metrics for a given window,
currently Ethereum retains all data ever submitted to the
blockchain. There are theoretical solutions to this problem, but
none of them have been implemented. For example, in [20] a
concept called State Tree Pruning is proposed where nodes
from the state tree that are no longer in use can be removed.
This would allow to keep a constant storage requirement
for a constant number of infrastructure components. Another
potential solution is proposed in [21], where only a few nodes
need to retain the entire blockchain, and most nodes only
need a significantly smaller blockchain, without reducing the
security of the overall system. Unfortunately, none of these
solutions have been implemented yet.

Another, more radical, solution would be to stop storing
metrics on the blockchain altogether, and instead move to
offchain storage, e.g. based on IPFS as described in [22].
This would mean that the actual data would be stored in a
distributed filesystem, and only a reference would need to be
stored on the blockchain. The obvious benefit would be that a
solution such as IPFS is a much more efficient data store, but
it would make integrating the metrics in scenarios such as the
proposed user defined SLA smart contracts more complex.

3) Security: Given that rewards contributors receive value,
it is necessary to make sure the system does not contain any
loopholes that can be used by malicious actors to gain an unfair
advantage. For most of the platform we use open-source soft-
ware and standards which are well-maintained. Vulnerabilities
might occur in these components, but can largely be mitigated
by keeping the software up-to-date.

More pressing is that, in theory, a user could generate fake
data and present it to the platform as being legit. For example,
a user could implement a software gateway that generates
messages. The platform would process these messages and
assume that the particular user is contributing significantly and
issue rewards accordingly. In the current set-up, we prevent
this through the application of a whitelist. Every component
first has to be whitelisted by other (trusted) users, before
data from that component is accepted. However, there are
two main drawbacks to this approach. Firstly, the solution
does not provide full guarantees. As soon as a component is
trusted, it can start generating fake data. The second drawback
is that it requires a manual step before contributors can get
rewarded, namely getting authorized by the whitelist. Ideally,
the platform would provide a built-in mechanism to overcome
this issue in an automated way, but this remains an open issue.

V. DISCUSSION

A. Findings

1) Scalability: During the implementation of these smart
contracts we quickly ran into the current technical limits of
blockchain, especially in the area of scalability. The PoC
developed during the case study showed us that both computa-
tional and storage requirements quickly become too high to be
practical when scaling up. Note that this is not only a pressing
issue for private distributed ledger implementations such as the
one explored in our research, but also for well-known public
blockchains such as Bitcoin and Ethereum. Noteworthy in that
regard is the scaling debate Bitcoin is currently facing. Various
groups within the ecosystem have different visions on how
the underlying technology should be scaled, but up until the
time of writing no consensus (ironically) has been achieved on
which direction the community should pursue.

2) Off-Chain Assets: Another pain point for distributed
ledgers relates to off-chain assets, i.e. data about “stuff”
from the real world, as opposed to assets that live on the
blockchain such as bitcoins. For on-chain assets, their validity
and ownership is governed by built-in mechanisms, i.e. they
only exist because the blockchain tells us so. However, for off-
chain assets, someone first has to submit facts about the asset
to the blockchain. Although that specific fact is securely stored
on the blockchain from that point on, it does not prove anything
about its truthfulness in the real world. Ultimately, everyone
has to trust the original party to have provided valid data.
Measures can be taken to improve the trustworthiness, e.g. by
requiring a quorum to agree on the data before accepting it,
but it still does not provide a watertight proof on truthfulness.

3) Degree of Trust: One should note that not every ecosys-
tem is fully trustless. Currently, most of the major blockchains
assume that all participants are anonymous and not necessarily
to be trusted. However, this assumption does not hold for
every community. For example, in the context of TTN we saw



that it was possible to identify a consortium of organizations
that are widely recognized as being trustworthy. In addition to
circumventing the previously discussed issue on off-chain data,
this “semi-trustlessness” can be leveraged to use a less strict
consensus mechanism such as Proof of Authority. This results
in a lower operational cost, since it is no longer necessary
to perform the mining as is the case for PoW. Naturally,
some communities do require the system to be able to operate
under the “trustlessness assumption”, but it is nevertheless an
important aspect to consider when designing a new system that
employs a distributed ledger.

B. Threats To Validity

While we expect the platform and underlying concepts to
be applicable to other DIIs, we only studied one case study
which is a threat to the external validity of this research.
Second, the implemented PoC is a subset of the proposed
architecture, and some concessions have been made due to
time constraints. Therefore, these discrepancies might threaten
the construct validity of our research. Finally, while we have
compared various distributed ledger technologies, we imple-
mented the platform only on top of Ethereum. This may have
led to a bias in our findings. Given more time, we would have
explored different technologies.

VI. CONCLUSIONS AND FUTURE WORK

The results of our research provide an architecture for a
Micro Economy platform for DIIs. The outcomes of the case
study conducted at TTN reveals an effective application of
the architecture to a DIIs case. From the point of view of
the TTN’s stakeholders, the architecture is a stepping stone
to support DIIs developments. In addition, the results of this
research motivate an extensive study on how to incorporate
security and scalability support.

First, more research is necessary to find mechanisms to
securely collect metrics about infrastructure components, be-
cause the current architecture is not fully sealed against attacks
where participants fake component data to gain an advantage.
One solution we envision would be to apply cryptography
to securely sign messages so their origin is warranted to
be legitimate. Another possible solution is to use a system
of witnesses that vote on the legitimacy of submitted data.
Nevertheless, more research is required to validate both ideas
and find possible alternative solutions.

Secondly, the implementation shows that the scalability
of the current architecture is relatively limited due to the
processing speed and storage requirements of the blockchain.
While there is still room to optimize the current proof of
concept, e.g. by tuning parameters such as block size and the
interval between batches, we don’t expect order of magnitude
improvements. Therefore, it is necessary to fundamentally
improve the performance of the architecture. Two ideas that
need to be further investigated are 1) storing metrics off-chain
(e.g. using IPFS [22]) to reduce the storage requirements, and
2) explore the possibility of using payment channels [23] for
smart contracts to reduce the number of required transactions
and thereby increasing the overall throughput.

In the short term, we plan to conduct a multi-case study
to assess the current scalability support of the architecture.

Based on the findings, we plan to release a new version that
can be evaluated by the DIIs participants. Therefore, we find
appropriate to conduct qualitative research as well. In this
way, we want to advance towards an architectural pattern
[24], [25] for distributed-ledger systems. On a final note, the
landscape of distributed ledgers advances at a rapid pace and
is of relatively tender age. It is therefore essential to keep track
of developments in this research area and continuously assess
the potential of new ideas and technologies.

REFERENCES

[1] J. Hamari, M. Sjöklint, and A. Ukkonen, “The sharing economy: Why
people participate in collaborative consumption,” JASIST, vol. 67, no. 9,
pp. 2047–2059, 2016.

[2] A. Sundararajan, “The power of connection: Peer-to-peer businesses,”
2014.

[3] The things network. [Online]. Available: https://thethingsnetwork.org
[4] S. Kerr, “On the folly of rewarding a, while hoping for b,” Academy of

Management Journal, vol. 18, pp. 769–783, 1975.
[5] M. Swan, Blockchain: Blueprint for a new economy. ”O’Reilly Media,

Inc.”, 2015.
[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[7] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” 2014.
[8] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme,

Can We Afford Integrity by Proof-of-Work? Scenarios Inspired by the
Bitcoin Currency. Springer, 2013, pp. 135–156.

[9] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, Proofs of
Space. Springer, 2015, pp. 585–605.

[10] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin:
Repurposing bitcoin work for data preservation,” in Proceedings of the
IEEE Symposium on Security and Privacy. IEEE, May 2014.

[11] S. Park, K. Pietrzak, J. Alwen, G. Fuchsbauer, and P. Gazi, “Spacecoin:
A cryptocurrency based on proofs of space,” IACR Cryptology ePrint
Archive, 2015: 528, Tech. Rep., 2015.

[12] I. Bentov, A. Gabizon, and A. Mizrahi, Cryptocurrencies Without Proof
of Work. Springer, 2016, pp. 142–157.

[13] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” 2014.

[14] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[15] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015.
[16] A. Churyumov, “Byteball: a decentralized system for transfer of value,”

2015.
[17] S. Popov, “The tangle,” 2016. [Online]. Available:

https://iotatoken.com/IOTA Whitepaper.pdf
[18] N. Rozanskiand E. Woods, Software systems architecture: working with

stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.
[19] J. Kramer, “A blockchain-based micro economy platform for distributed

infrastructure initiatives,” 2017.
[20] “State tree pruning.” [Online]. Available:

https://blog.ethereum.org/2015/06/26/state-tree-pruning/
[21] D. Frey, M. X. Makkes, P.-L. Roman, F. Taı̈ani, and S. Voulgaris,

“Bringing secure bitcoin transactions to your smartphone,” in Adaptive
and Reflective Middleware. ACM, 2016, pp. 3:1–3:6.

[22] J. Benet, “IPFS - content addressed, versioned, P2P file
system,” CoRR, vol. abs/1407.3561, 2014. [Online]. Available:
http://arxiv.org/abs/1407.3561

[23] C. Decker and R. Wattenhofer, A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels. Cham: Springer Inter-
national Publishing, 2015, pp. 3–18.

[24] P. Avgeriou and U. Zdun, “Architectural patterns revisited – a pattern
language,” in EuroPLoP 2005.

[25] J. Peters, J. M. E. M. van der Werf, and J. Hage, “Architectural pattern
definition for semantically rich modular architectures,” in WICSA 2016.
IEEE Computer Society, 2016, pp. 256–261.


