
Behavior-Driven Requirements Traceability via
Automated Acceptance Tests

Garm Lucassen, Fabiano Dalpiaz,
Jan Martijn E.M. van der Werf, Sjaak Brinkkemper

Utrecht University, The Netherlands
{g.lucassen, f.dalpiaz, j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl

Didar Zowghi
University of Technology Sydney, Australia

didar.zowghi@uts.edu.au

Abstract—Although information retrieval advances signifi-
cantly improved automated traceability tools, their accuracy
is still far from 100% and therefore they still need human
intervention. Furthermore, despite the demonstrated benefits of
traceability, many practitioners find the overhead for its creation
and maintenance too high. We propose the Behavior Driven
Traceability Method (BDT) that takes a different standpoint
on automated traceability: we establish ubiquitous traceability
between user story requirements and source code by taking
advantage of the automated acceptance tests that are created
as part of the Behavior Driven Development process.

Index Terms—User stories, automated acceptance tests, trace-
ability, requirements, behavior-driven development

I. INTRODUCTION

The benefits of maintaining requirements traceability in-
clude support for change impact analysis, increased program
comprehension and faster software development [1]. Nonethe-
less, many industry practitioners do not adopt traceability
practices [2]. Two main reasons are that (i) the stakeholders
who need to create the links are not the ones who reap the
benefits, the so-called traceability benefit problem [3], [4], and
(ii) the lack of methods and tools supporting traceability [5]
hamper the effective adoption of traceability practices [6].

Recognizing these problems, Cleland-Huang and colleagues
put forward the grand challenge of “always there” ubiqui-
tous traceability that is “built into the software engineering
process” [6]. This is particularly relevant for the ad-hoc and
just-in-time requirements engineering practices of agile and
open source projects, which do not go beyond prefacing a
commit message with an issue ID [7]. Many tools have been
proposed [8]–[10] that largely rely on information retrieval
(IR) algorithms. Although promising, those IR algorithms
do not yield the 100% accuracy that ubiquitous traceability
requires and their performance is highly dependent on the
input data quality and type [11].

In this paper, we present the automated Behavior-Driven
Traceability method to establish ubiquitous traceability by
taking advantage of automated acceptance tests. Created as
part of the software engineering process Behavior-Driven
Development or BDD [12], these tests refine user story re-
quirements into steps that mirror a user’s interaction with the
system. A typical acceptance test has at least three steps: (i)
establishing a starting position by navigating to a specific
interface, (ii) executing one user action such as clicking a

button and (iii) asserting whether the action produced the
expected effect.

Unlike unit tests, these steps do not directly execute the
source code itself. Instead, a BDD framework launches a com-
plete instantiation of the software system and then simulates
how a user would interact with the interface. This creates
an opportunity to leverage runtime tracers to identify all the
source code invoked to realize a given user story without
requiring imprecise information retrieval techniques.

After presenting the necessary background in Section II, we
introduce the Behavior-Driven Traceability method (BDT) for
generating execution traces that link user stories to code via
automated acceptance tests in Section III. Throughout these
sections, we illustrate our work with the running example
of the fictitious EventCompany’s software that enables event
organizers to sell tickets to their visitors online. The discussion
and outlook in Section IV concludes with the implications of
BDT and opportunities for future work.

II. BACKGROUND

We present the relevant literature for our approach: agile
requirements via user stories, requirements traceability and its
role in agile development, and behavior-driven development.

A. User Stories

User stories are a concise notation for capturing require-
ments whose adoption has grown to 50% thanks to the
increasing popularity of agile development practices such
as Scrum [13], [14]. A user story consists of three basic
components: (1) a short text describing the user story itself, (2)
conversations between stakeholders to exchange perspectives
on the user story, and (3) acceptance criteria. In this paper, we
are concerned with the first and the third elements.

The first component captures the essential elements of a
requirement: who it is for, what is expected from the system,
and (optionally) why it is important. An example of a user
story that follows the popular Connextra format [15] is the
following: “As an Administrator, I want to receive an email
when a contact form is submitted, so that I can respond to it”.

B. Requirements traceability

Requirements traceability has been studied for almost three
decades [16] and already in 2003 Lee et al. emphasized the

2017 IEEE 25th International Requirements Engineering Conference Workshops

978-1-5386-3488-2/17 $31.00 © 2017 IEEE

DOI 10.1109/REW.2017.84

431

importance of early and non-obtrusive methods for traceability
to become successful in agile software development [17]. This
is echoed by the vision for ubiquitous traceability that is
“always there” and “built into the engineering process” [6].

Recent works contribute towards this vision with vary-
ing levels of success. Ranging from lightweight just-in-time
traceability [18] to sophisticated approaches that combine
IR methods to achieve state-of-the-art accuracy [19], [20].
Unfortunately, industry has yet to embrace these advances.

The software industry adopts simpler agile traceability
practices, such as prefacing code commit messages with an
issue ID to manually create an issue-code segment trace [7].
However, this method is vulnerable to human negligence and
requires processing large amounts of historical data.

C. Behavior-Driven Development

Behavior-Driven Development (BDD) [12] augments Test
Driven Development (TDD) [21] in two ways: (a) teams
should formulate a simple “ubiquitous language” for capturing
automated acceptance tests that any team member can read and
(b) these acceptance tests should specify user behavior for the
system to fulfill. See Listing 1 for an example acceptance
test utilizing the industry-standard Gherkin syntax, which
describes a series of steps using given some initial context,
when an event occurs, then ensure some outcome [22].
While not ubiquitous, it is recommended practice to annotate
a BDD test with the user story it tests [12]. For illustration
purposes, we refer to requirements for the EventCompany
scenario (see Section I).

Listing 1 Example acceptance tests for EventCompany us1
1: Feature: Contact Form
2: As a Visitor
3: I want to use the contact form
4: so that I can contact the organizer.

5: Scenario: Submit contact form
6: Given I go to the ”contact” page
7: visit path to(contact page)
8: When I enter ”Hello World” in the ”Question” field
9: fill in(’Question’, with: ‘Hello World’)

10: And I submit the form
11: click button(’Submit’)
12: Then the organizer receives a message
13: open email(’organizer@webcompany.com’)
14: expect(current email).to have content ‘Hello World’

Each scenario step captures a single behavior for the system
to fulfill. If these tests are maintained and extended to support
new functionality, a comprehensive collection of BDD tests
functions as a growing, accurate and up-to-date documentation
source for the entire software system [22].

Unlike unit tests, BDD tests do not directly execute methods
or code parts. Instead, a BDD test framework launches the
entire software system and simulates how a real user would
interact with the software’s interface step by step. As a
consequence, the execution trace of a BDD test includes all the
source code invoked to realize its annotated user story. This

creates an opportunity to trace user story requirements with-
out requiring probabilistic—thus, imprecise—IR techniques.
While the tracing is still only as good as the human-created
BDD tests, unlike other approaches BDD output does not re-
quire any additional effort to establish ubiquitous traceability.

Although BDD is still a fringe development process, it
has evolved and grown considerably in the past ten years.
Community-driven initiatives have resulted in a mature devel-
opment approach with ample reference literature and strong
tool support. Nowadays, the Cucumber tool and its associated
The Cucumber Book are the de-facto standard for BDD [22].

Research that uses or extends the approach is limited to
automatically analyzing BDD acceptance tests using NLP to
either (i) suggest source code or test code [23], [24], or (ii)
reconcile BDD with Business Process Modeling [25], [26].

III. BEHAVIOR-DRIVEN TRACEABILITY

We propose the Behavior-Driven Traceability Method or
BDT (see Fig. 1) that automatically establishes ubiquitous
traceability on top of the well-established BDD process.
BDT relies on two key features of BDD: (i) its detailed
decomposition of each user story in brief scenario tests that
describe end-user interaction in a stepwise fashion, and (ii)
the practice of operationalizing these steps on the system’s
interface instead of the source code. We explain how the BDT
Method takes advantage of these characteristics and introduce
the BDT Tracer for building the so-called BDT Matrix that
records the source code and methods called for each user story.
We illustrate each step using EventCompany as an example.

BDT testsBDT testsBDD tests 2. executes1. elaborated in
User

stories Source code

3. generates

Runtime test
trace

4. reports stories

4. reports trace

c0 c1
us1 1

c2

us2 0 1
us3 0 2 0

0 0
0

c4 c5
2

c6

0 0
2 0 0

0 0
1

us5 1
us6 0 1
us7 0 2 0

0 0
0

1
0 1
0 2 0

0 0
0

us4

c3

1

0
0

0 2 1 0 2 0

0

3
0

0

BDT Matrix
(stories, code)

Fig. 1. Behavior-Driven Traceability Method

As an extension of BDD, BDT first requires the formulation
of user stories, which the developers subsequently manually
(1) elaborate in a collection of BDD tests that validate whether
the developed features satisfy the customer’s requirements. We
expand upon EventCompany’s initial user story and associated
BDD test in Listing 1 by introducing us2: “As an Organizer,
I want to register my event, so that I can sell tickets”. As
the development of both user stories completes, successfully
running the BDD test suite (2) executes the source code by
mimicking how a real person would use the system’s interface.
To (3) generate runtime test traces for the BDD tests we need
to integrate with and extend a project’s source code so it logs

432

Listing 2 Snippet of the output of the BDT Runtime Tracer for the Contact Form user story (us1)
File Class:method us# BDD scenario BDD test step

1 c l a s s e s / u s e r . rb : 1 0 User : c u r r e n t u s e r us1 f e a t u r e s / c o n t a c t . f e a t u r e : 5 f e a t u r e s / c o n t a c t . f e a t u r e : 6
2 c l a s s e s / u s e r . rb : 2 2 User : t r a c k v i s i t o r us1 f e a t u r e s / c o n t a c t . f e a t u r e : 5 f e a t u r e s / c o n t a c t . f e a t u r e : 6
3 c l a s s e s / form . rb : 1 5 Form : p r o c e s s us1 f e a t u r e s / c o n t a c t . f e a t u r e : 5 f e a t u r e s / c o n t a c t . f e a t u r e : 1 0
4 c l a s s e s / u s e r . rb : 2 2 User : t r a c k v i s i t o r us1 f e a t u r e s / c o n t a c t . f e a t u r e : 5 f e a t u r e s / c o n t a c t . f e a t u r e : 1 0

all invoked methods. To achieve this, we leverage the availabil-
ity of runtime tracers for programming languages: Python has
traceback, .Net comes with Environment.StackTrace and Java
supports getStackTrace. Since BDD tests decompose each
user story into small steps, these tracers can relate lines of
code to BDD artifacts at three levels of granularity: an entire
user story, a scenario that tests part of the user story, or a single
scenario step. Our BDT Tracer on GitHub1 shows how we
configure Ruby’s TracePoint to record traces for all relevant
method calls in a Ruby on Rails project.

Listing 2 shows a partial runtime trace generated by the
Ruby BDT Tracer for the Contact Form feature of Listing 1.
Each line lists the location of the executed source code file,
the invoked class and method, the user story in the description,
the BDD scenario and the corresponding BDD test step that
triggered the executed source code. Note that the numbers 5,
6 and 10 after the BDD scenarios and test steps refer to the
line numbers of Listing 1. This is formalized in Definition 1.

Def. 1 [Runtime test trace] Given a set of user stories
US = {𝑢𝑠1, . . . , 𝑢𝑠𝑛}, a runtime test trace rttus is a list
built by sequentially executing all the BDT tests of all
user stories in the set, where every list element is a tuple
⟨loc, cl ,meth, us , scen, step⟩ such that loc is the source code
location of the class cl whose method meth was executed as
part of step of the scenario scen of the user story us.

The BDT method then (4) combines the reported runtime
test trace with the BDD test’s annotated user stories into the
BDT Matrix. This matrix records user stories on the Y axis,
source code methods on the X axis and the number of times
each user story invokes each method in the cells. Table I
shows the BDT Matrix for the two EventCompany’s user
stories introduced earlier in this paper. Definition 3 formalizes
the notion of a BDT Matrix after Definition 2 presents the
preliminary concept of invocation frequency.

Def. 2 [Invocation frequency] Given a user story usi and a
runtime trace rtt{usi}, the invocation frequency for a method
𝑚 of class 𝑐 (denoted as c:m) invFreq𝑢𝑠,𝑐:𝑚 ∈ 𝒩 indicates
the number of tuples ⟨loc, cl ,meth, us , scen, step⟩ in rtt{usi}
such that 𝑐𝑙 = 𝑐 and 𝑚𝑒𝑡ℎ = 𝑚.

Def. 3 [BDT Matrix] Let US = {𝑢𝑠1, . . . , 𝑢𝑠𝑛} be a set of
user stories, 𝑀 = {𝑚′

1, . . . ,𝑚
′
𝑞} be a set of methods (each

included in some class). A BDT Matrix BDT has size 𝑛× 𝑞,
and each cell indicates the invocation frequency of a method

1https://github.com/gglucass/BDT/blob/master/bdt tracer.rb

in the BDD tests of a user story. Formally, ∀𝑖, 𝑗 ∈ 𝒩+ such
that 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑞, then BDTi,j = invFreq(𝑢𝑠𝑖,𝑚

′
𝑗).

When a software development team creates individual BDD
tests for each user story, applying BDT results in a BDT
Matrix that allows a developer to request all the source code
invoked to realize a given user story. By applying smart
filtering techniques the BDT Matrix can then be used to
produce a variety of reports, such as methods that are never
called in the entire test suite to identify dead code, or all the
classes involved in a specific user story to inform developers
modifying or refactoring a user story’s code.

TABLE I
PARTIAL BDT MATRIX FOR THE EVENTCOMPANY CASE

User: Form: Event:
current user track visitor process encode media check pricing

us1 1 2 1 0 1
us2 1 0 1 1 1

Note, however, the significant overlap in the BDT Matrix:
3 out of 5 methods are called when running the test for both
user stories. This is typical for high quality software that relies
on code reuse. Thus, BDT is prone to including omni-present
code: classes and methods that are called in almost every test
step. These create noise in the output, making it more difficult
to identify the unique code for that user story.

To reduce this effect, we take inspiration from feature
location techniques that automatically identify which part
of the source code implements a given functionality [27].
Our situation is comparable to software reconnaissance [28]:
runtime traces produced by running test scenarios contain a
lot of shared source code, thereby hiding uncommon and
feature-specific methods. They identify the “uniquely involved
components” for a feature by taking the set of components ex-
ercised as part of the test cases related to that feature and then
excluding any components exercised in test cases unrelated
to the feature. We go beyond this approach and look at the
relative importance of the uniquely involved components.

To identify all uncommon, relevant methods and retain their
relative importance, we normalize the BDT Matrix by dividing
the number of method calls for a user story by the total number

TABLE II
NORMALIZED PARTIAL BDT MATRIX FOR THE EVENTCOMPANY CASE

User: Form: Event:
current user track visitor process encode media check pricing

us1 0.5 2 0.5 0 0.5
us2 0.5 0 0.5 1 0.5

433

of user stories, scenario’s or steps the method is called in,
resulting in the normalized BDT Matrix in Table II. Note for
example that the User:current user method is called in both
user stories, resulting in a normalized BDT output of 1/2 =
0.5. User:track visitor is only called in us1, however, leading
to a normalized BDT output of 2/1 = 2, emphasizing the
important role of this method for us1.

Def. 4 [Normalized BDT Matrix] Given a BDT Matrix of size
𝑛×𝑞, a normalized BDT Matrix NBDT has size 𝑛×𝑞 and its
cells denote the relative frequency for a user story to invoke a
method with respect to how many other user stories also invoke
that method. Formally, let ite be the if-then-else operator, and
∀𝑖, 𝑗 ∈ 𝒩 .𝑖 ≤ 𝑛, 𝑗 ≤ 𝑞,

NBDT us
i,j =

⎧⎨
⎩

0 if BDTi,j = 0
BDT 𝑖,𝑗∑

1≤𝑘≤𝑛

𝑖𝑡𝑒(BDT 𝑘,𝑗 > 0, 1, 0)
otherwise

It is also possible to obtain a more fine-grained normaliza-
tion with respect to the number of test scenario (NBDT sc)
or steps (NBDT st), instead of the number of user stories. In
those two variants, the numerator stays the same (BDTi,j),
while the denominator is the number of scenarios and the
number of steps that invoke method 𝑗, respectively.

IV. DISCUSSION AND OUTLOOK

This paper proposed the Behavior-Driven Traceability
method (BDT) that, building on the agile software devel-
opment process Behavior-Driven Development, attempts to
establish ubiquitous traceability [6]. We have shown how to
trace user story requirements to source code by processing
runtime traces of automated acceptance tests, and how normal-
ized versions of the BDT matrix emphasize user-story-specific
classes and methods.

Initial testing of our prototype on the open source project
Archive of Our Own (https://archiveofourown.org) produces
promising output that motivates us to continue investigating
this domain (available at https://goo.gl/LmDvQi). Both raw
and normalized BDT output have merit: the former captures
the prevalence and importance of a small number of classes
and methods, while the latter highlights classes and methods
that are important to a single user story.

In future work we intend to evaluate BDT output’s ac-
curacy by testing our prototype on industry projects and by
involving practitioners. In particular, we want to understand
whether the classes and methods in the NBDT matrix are
relevant for software engineering tasks such as refactoring
and resolving bugs. We are currently applying BDT at one
industry partner to demonstrate to the Central Dutch Bank
that its ability to accurately pinpoint which code is relevant
for which requirement at any given time. Another interesting
direction is automated change impact analysis: how to use
BDT for identifying the impact of adding a new user story.
Finally, we plan to experiment state-of-the-art feature location
techniques as part of our normalization method.

REFERENCES

[1] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Software Engineering, vol. 20, no. 2, pp. 413–441, 2015.

[2] F. Blaauboer, K. Sikkel, and M. N. Aydin, “Deciding to adopt require-
ments traceability in practice,” in Proc. of CAiSE, 2007, pp. 294–308.

[3] P. Arkley and S. Riddle, “Overcoming the traceability benefit problem,”
in Proc. of RE, Aug 2005, pp. 385–389.

[4] D. M. Berry, K. Czarnecki, M. Antkiewicz, and M. Abdelrazik, “The
problem of the lack of benefit of a document to its producer (Pot-
LoBoaDtiP),” in Proc. of SWSTE, June 2016, pp. 37–42.

[5] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Proc. of REFSQ, 2013, pp.
158–173.

[6] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and
A. Zisman, “Software traceability: Trends and future directions,” in Proc.
of FOSE. ACM, 2014, pp. 55–69.

[7] N. A. Ernst and G. C. Murphy, “Case studies in just-in-time requirements
analysis,” in Proc. of EmpiRE, Sept 2012, pp. 25–32.

[8] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: a
systematic mapping of information retrieval approaches to software
traceability,” Empirical Software Engineering, vol. 19, no. 6, pp. 1565–
1616, 2014.

[9] A. M. D. Duarte, D. Duarte, and M. Thiry, “TraceBoK: Toward a
software requirements traceability body of knowledge,” in Proc. of RE,
Sept 2016, pp. 236–245.

[10] T. Vale, E. S. de Almeida, V. Alves, U. Kulesza, N. Niu, and R. de Lima,
“Software product lines traceability: A systematic mapping study,”
Information and Software Technology, 2016.

[11] T. Merten, D. Krämer, B. Mager, P. Schell, S. Bürsner, and B. Paech,
“Do information retrieval algorithms for automated traceability perform
effectively on issue tracking system data?” in Proc. of REFSQ, 2016,
pp. 45–62.

[12] D. North, “Behavior modification,” Better Software Magazine, Jun. 2006.
[13] L. Cao and B. Ramesh, “Agile requirements engineering practices: An

empirical study,” IEEE Software, vol. 25, no. 1, pp. 60–67, 2008.
[14] M. Kassab, “The Changing Landscape of Requirements Engineering

Practices over the Past Decade,” in Proc. of EmpiRE, 2015, pp. 1–8.
[15] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper,

“The Use and Effectiveness of User Stories in Practice,” in Proc. of
REFSQ, ser. LNCS, vol. 9619. Springer, 2016, pp. 205–222.

[16] J. Cleland-Huang, “Traceability in Agile Projects,” in Software and
Systems Traceability. Springer, 2012, pp. 265–275.

[17] C. Lee, L. Guadagno, and X. Jia, “An agile approach to capturing
requirements and traceability,” in Proc. of TEFSE, 2003.

[18] J. Cleland-Huang, M. Rahimi, and P. Mäder, “Achieving lightweight
trustworthy traceability,” in Proc. of FSE, 2014, pp. 849–852.

[19] Y. Zhang, C. Wan, and B. Jin, “An empirical study on recovering
requirement-to-code links,” in Proc. of SNPD, May 2016, pp. 121–126.

[20] M. Rahimi, W. Goss, and J. Cleland-Huang, “Evolving requirements-
to-code trace links across versions of a software system,” in Proc. of
ICSME, Oct 2016, pp. 99–109.

[21] K. Beck, Test-driven development: By example. Addison-Wesley, 2003.
[22] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven

Development for Testers and Developers. Pragmatic Bookshelf, 2012.
[23] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven

development using natural language processing,” in Proc. of TOOLS,
C. A. Furia and S. Nanz, Eds., 2012, pp. 269–287.

[24] N. Gao and Z. Li, “Generating testing codes for behavior-driven de-
velopment from problem diagrams: A tool-based approach,” in Proc. of
RE, Sept 2016, pp. 399–400.

[25] R. A. de Carvalho, F. L. de Carvalho e Silva, and R. S. Manhães,
“Mapping business process modeling constructs to behavior driven
development ubiquitous language,” CoRR, vol. abs/1006.4892, 2010.

[26] D. Lübke and T. van Lessen, “Modeling test cases in bpmn for behavior-
driven development,” IEEE Software, vol. 33, no. 5, pp. 15–21, 2016.

[27] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[28] N. Wilde and M. C. Scully, “Software reconnaissance: Mapping program
features to code,” Journal of Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49–62, 1995.

434

