Alignment of Software Product Management and
Software Architecture with Discussion Models

Garm Lucassen, Jan Martijn E. M. van der Werf and Sjaak Brinkkemper
Department of Information and Computing Sciences
Utrecht University
Princetonplein 5, 3584 CC Utrecht, The Netherlands
{g.lucassen, j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl

Abstract—How to achieve alignment of software product
management with software architecture and whether there is a
business case for doing so is scientifically unknown. Yet, software
architecture has large, direct impact on product success factors:
creating a winning product and delivering value to customers. In
this exploratory case study paper we identify the most critical
processes for SPM and SA alignment: requirements gathering
and refinement. These processes require effective communication
supported by high level architectural views. Our respondents,
however, rely on simple methods due to their negative experiences
with formalized models. Based on these findings, we propose
the Accurate Architectural Models Approach (AAMA) which
prevents architectural model divergence.

I. INTRODUCTION

Software product managers achieve product success by
focusing on three goals: (1) creating a winning product and
business case, (2) conquering markets and growing market
share and (3) delivering value to customers [1]. An essential
aspect to reaching these goals is requirements engineering
(RE) [1]. Software architects have similar goals. They make
architectural design decisions (ADDs) based on available
requirements and previous ADDs [2] to satisfy stakeholders’
functionality and quality attribute requirements [3]. Believing
that an early software architecture (SA) understanding is as
important to project success as requirements understanding, [4]
adapted the Twin Peaks Model as introduced by Ward [5]. The
Twin Peaks model supports the co-evolution of SA and RE by
concurrently developing requirement details and architectural
specification (Figure 1).

General

Level
of
detail

Design

R (architecture)

Detailed

Independent Dependent

Implemententation dependence

Fig. 1. The Twin Peaks of Requirements and Architecture [4]

The Twin Peaks model originates from research on software
projects. However, the product software domain diverges from
projects. As software producing organizations (SPOs) grow,
they encounter large numbers and varieties of stakeholders
that generate a continuous input of requirements [6]. Conse-
quentially, decisions need to be made on which requirements
to fulfill at what moment in time. To manage these inputs
and decisions, SPOs require special processes [7], [8] that
are typically the responsibility of software product managers.
According to [9], product managers are crucial to product and
company success and [1] even states that “companies win or
fail depending on their product managers”.

For SPOs, product managers are the primary interface
and representative of stakeholders’ requirements to the de-
velopment team including the architect. Consequentially, we
hypothesize that successful collaboration between software
product management (SPM) and software architecture (SA) is
essential for achieving both product success goal 1 and 3 and
therefore product success. [10] supports this premise, noting
that SPM alignment with SA is critical to software product line
success. However, no publications to substantiate this claim are
available. Before we can attempt to confirm the importance
of SPM and SA interdependence, we first need to establish
whether SPM and SA at contemporary SPOs collaborate in
the first place. To this end, we pose the following research
question: “How do software product managers and software
architects collaborate?”.

This exploratory research discusses five case studies at
Dutch SPOs to detail their SPM and SA processes and
facilitating instrumentations. We identify two critical processes
where product managers and architects exchange information:
requirements gathering and requirements refinement. These
activities require reciprocal information exchange on a high
technical level to drive product success. Respondents, how-
ever, lack a structured approach that warrants SPM and SA
alignment. We propose a solution that prevents architectural
model divergence to improve SPM and SA alignment.

The subsequent sections II, III and IV discuss relevant SA
and SPM literature. Next, we detail the research approach of
this paper in section V. Section VI presents the case study re-
sults, followed by a discussion in VII and a proposed solution
in VIII. We summarize our primary results and present future
research opportunities in the concluding Section IX.

II. SOFTWARE ARCHITECT PROCESSES

Software Architecture is “the set of structures needed to
reason about the system, which comprises software elements,
relations among them, and properties of both” [3]. Typical
software architecture documentation consists of a collection of
views, which are “a representation of a set of system elements
and the relationships associated with them” [3]. An organiza-
tion creates architecture documentation for multiple purposes.
Organizations use it to design, analyze, communicate and/or
educate a software system from multiple, varying stakeholder
role perspectives. Considering that stakeholders can be as
diverse as a customer and a developer, the seminal standard
on Software Architecture (IEEE Standard 1471-2000) declares
that architectural models are inherently multi-viewed [11].

A software architect has four primary tasks: developing
project strategy, designing systems, communicating with stake-
holders and being a leader [12]. Over time, the architect
develops a software architecture by making architectural de-
sign decisions (ADDs) based on the project context which
consists of stakeholder requirements and previous ADDs [2].
The ADDs in aggregate attempt to satisfy stakeholders’ qual-
ity attribute requirements [3]. Quality attribute requirements
specify system operation, contrary to functional requirements
which specify system behavior. Their importance for product
success is equal. After all, a system’s ability to produce correct
information is useless when the system is unable to deliver
that information in time, securely or at all [3]. Achieving
quality attribute criteria is central to the software architec-
ture discipline. The ISO/IEC 25010 standard on system and
software quality models posits that software product quality
attributes comprise eight characteristics: functional suitability,
performance efficiency, compatibility, usability, reliability, se-
curity, maintainability and portability [13]. Each characteristic
contains a number of related sub-characteristics, which “are
useful for specifying requirements, establishing measures, and
performing quality evaluations” [13].

The ADDs a software architect makes are based on stake-
holder requirements. Therefore, quality attributes are an in-
direct consequence of the project’s set of requirements, cre-
ating a strong relationship between RE and SA. Drawing
inspiration from Nuseibeh’s Twin Peaks model for software
development [4], several authors have formulated approaches
to further relate software requirements and architecture [14]-
[18]. However, none of these are widely adopted in business or
academia. For example, the CBSP (Component-Bus-System-
Property) approach by Grunbacher [15], which delivers a
“proto-architecture” based on functional requirements to pre-
scribe further architectural development, has been applied a
limited number of times since its introduction [19], [20].

III. SOFTWARE PRODUCT PROCESSES

Software product management (SPM) is “the discipline
governing a software product over its whole life cycle, from its
inception to customer delivery, in order to generate the biggest
possible value to the business” [22]. [23] defines a software
product as “a packaged configuration of software components

or a software-based service, with auxiliary materials, which
is released for and traded in a specific market”. As software
producing organizations (SPOs) grow, they encounter large
numbers and varieties of stakeholders that generate a con-
tinuous input of requirements [6]. Due to limited resources,
decisions need to be made on which requirements to fulfill at
what moment in time.

To manage these inputs and decisions, SPOs require spe-
cial processes [7], [8] that are typically the responsibility
of software product managers. A product manager attempts
to achieve product success by focusing on three goals: (1)
creating a winning product and business case, (2) conquering
markets and growing market share and (3) delivering value to
customers [1]. In a case study examining what product man-
agers should do to reach these goals, practitioners assert that
“he does everything the product needs to be successful” [24].
Nevertheless, theory stipulates they manage requirements, pro-
duce release definitions and define products in an environment
with many internal and external stakeholders [25], [26]. This
wide range of responsibilities makes product managers crucial
to product and company success [9], [27].

Although the number of publications on SPM is growing
each year, the field is still young [28]. In 2011, [29] could find
only 25 articles on the subject. Consequently, SPM scholars
have difficulty to provide scientifically validated best practices
to industry. However, several authors have developed SPM
reference frameworks to exactly this end [21], [22], [25],
[30]. Of these, the Software Product Management Competence
Model (SPMCM) by [25] and extended by [21] is based on
extensive empirical research. The SPMCM (Figure 2) presents
the four main business functions within SPM: requirements
management, release planning, product planning and portfolio
management. Each business function consists of a number
of focus areas that represent a strongly coherent group of
capabilities. In theory, SPOs that hold these capabilities are
more effective in their product management but this remains
unproven to date.

[31] presents an approach to agile SPM, introducing prod-
uct management sprints alternating with development sprints
to ensure requirements’ are ready for use when software
development starts. During a product management sprint,
the SPM team conducts requirement refinement for product
backlog requirements from coarse-grained concepts to fine-
grained instructions that software engineers use. Concretely,
the product manager refines vision into specified requirements
through three, progressively more fine-grained stages: themes,
concepts and requirement definitions.

A. Requirements Management

Of the four main business functions in the SPM Compe-
tence Model, requirements management (RM) is the most
frequent, lowest level function a product manager partakes
in. Coincidentally, it is the most extensively studied domain
in IS/IT research. [21] identifies three focus areas relevant
in the product software context: (1) requirements gathering:
“the acquisition of requirements from both internal and exter-

External
stakeholders

Software Product Management

Internal
Stakeholders

Portfolio management

V1

[Market analysis Product lifecycle
’ management ’

Company

Partnering &
Board

contracting

v

A

Product planning

Sales

!

[Roadmap

Market intelligence

Product
roadmapping

Core asset
roadmapping

i

Marketing

v

—

Customers Release planning

Research &

Innovation

Partners

—>
|<— Y

Requirements Scope change Build validation
prioritization management
€

Development

Y

Release definition Releasg dgflnmon
validation

Launch
preparation

Support

v

)

—>-| Requirements management

Requirements Requirements Requirements
gathering identification organizing —>

Services

Fig. 2. Software Product Management Competence Model [21]

nal stakeholders”, (2) requirements identification: “identify-
ing the actual product requirements by rewriting the market
requirements to understandable product requirements, and
connecting requirements that describe similar functionality”
and (3) requirements organizing: “structuring the requirements
throughout their entire lifecycle based on shared aspects, and
describing the dependencies between product requirements”.
These three activities combined with prioritizing requirements
are traditionally called requirements engineering [32] and
considered to be a core product manager responsibility [1],
[26].

Requirements engineering typically occurs early in the
lifetime of a project to prevent increased costs associated
with requirements errors later on [33]. The product software
context, however, presents specific challenges that necessitate
a different approach to RE [34]-[36]. The large number of
requirements makes RE a daily necessity over the lifespan of
a software product. Furthermore, the large number of require-
ments frequently produces complications such as information
overload, combinatorial explosions and over-scoping [7]. Sev-
eral approaches to prioritize large numbers of requirements are
available, both generic [37], [38], and context specific [39].
None of these are widely adopted by SPOs, despite providing
concrete advantages over traditional prioritization techniques.

B. Release Planning, Product Planning, Portfolio Manage-
ment

The emphasis of this research lies on requirements manage-
ment, because it is the most frequent activity a product man-
ager conducts. Therefore, this subsection details the remaining
SPM activities only briefly. (1) Release planning comprises
activities for creating and launching a release [21]. The broad
business function comprises a variety of tasks ranging from
prioritizing and selecting requirements to preparing the launch
with internal and external stakeholders through negotiations
and trainings. (2) A product manager conducts product plan-
ning to construct a roadmap, which is an action plan for a

specific time period. The business function consists of three
activities: roadmap intelligence, product roadmapping and core
asset roadmapping. Information gathered in the first activity
is input during actual roadmap construction. (3) Portfolio
management consists of gathering strategic information and
making product decisions across the entire portfolio [21].
Decision support information gathered during market analysis
contributes to the business’s decision making on product
lifecycle management and partnering & contracting.

IV. SOFTWARE PRODUCT MANAGER AND SOFTWARE
ARCHITECT INTERDEPENDENCE

Of architects’ primary tasks, product managers are involved
in two: developing project (product) strategy and commu-
nicating with stakeholders. While SPM has a strong func-
tional focus, SA is primarily responsible for balancing the
appropriate quality attributes (QAs). While architects are able
to formulate adequate technical solutions for any functional
requirement, their proposed solution might not be optimal
considering product context [12]. For example, the QA perfor-
mance efficiency might be imperative for generating customer
reports, while reliability has priority for the support interface.
It is the product manager’s responsibility to accurately convey
context to enable the architect to make the right architectural
decisions. Depending on the product manager’s background
(30-50% marketing or engineering [1]) and position (R&D,
marketing or P&L [27]), the architect can discuss QA specifics
with the product manager. Besides technical stakeholders, [12]
notes that architects are in frequent contact with customers and
users. For SPOs, however, the large quantity of diverse cus-
tomers and users poses a communication challenge. Instead,
the product manager acts as a representative on both sides. He
communicates customer requirements to the architect, receives
feedback and reports results to the customer.

Of the three product success goals introduced in section III,
the architect has direct impact on (1) creating a winning

N
Software Product)
Management

Software
Architecture

Requirements
Engineering

Fig. 3. SPM, RE and SA relationships

product (and business case) and (3) delivering value to cus-
tomers. Initially, we speculated that the product manager
assumes the left peak of the Twin Peaks model. He exchanges
functional details to refine requirements concurrently with the
architect’s specifications. In a previous case study however, the
product manager’s requirement refinement scope is limited:
“The detailed definition of requirements is performed in three
steps, of which only the first one is performed by the SPM
team(s) [...] The software development teams then elaborate
these [high-level requirement definitions] into requirements
containing a detailed description of some desired functionality,
described in sufficient detail to work with” [31]. The SPMCM
by [21] does not recognize requirement refinement as an SPM
activity to begin with. Instead, we believe there is a conceptual
relationship between three activities: SPM, RE and SA. SPM
is primarily responsible for high-level strategic issues such
as market analysis, product roadmapping and fostering high-
level requirements. RE refines the high-level requirements
into sufficient detail to enable SA to realize the actual end-
product. The information exchange between SA and SPM and
their respective impact on one another’s activities, however,
is unknown. Figure 3 displays the conceptual relationship
between SPM, RE and SA and illustrates this paper’s central
question: how do SPM and SA collaborate?

Requirements’ central role for both stakeholders is a recur-
ring theme in this paper. Within the SPMCM, product man-
agers involve SA during requirements gathering, identification,
organizing, and prioritization. Architects require SPM input to
refine requirements, formulate correct architectural approaches
and communicate with external stakeholders. Both the product
manager and architect have a common goal: satisfy customer
requirements to deliver value and create product success.
Reaching this goal demands selecting the right requirements
for a release and enabling developers to implement require-
ments in the right manner. While organizing, identifying
requirements and formulating architectural approaches are es-
sential, we believe these activities are out of the stakeholder’s
respective scope. Based on these literature findings, we posit
that product managers’ and architects’ contribute to each
other’s goals in four activities: (1) requirements gathering,
(2) prioritization, (3) refinement and (4) transferring product
context. In terms of the conceptual relationship in Figure 3,

Software Architect Artifacts Software Product Manager

Product

requiroments - - - -Conquering markets

Communicating with <~~~ A
and growing market

stakeholders

Requirement
A e feedback - share
Architectural
product knowledge
Developing Project ==~ Release definition |~~~ e reating a winning

product and business
Product context |==~f~~ case

Designing systems_ _{ _ __ | Architectural Design | _ _|
Being a leader----f---- Decisions

Strategy -

Delivering value to
customers

Fig. 4. Reciprocal Contributions to SPM and SA goals

the product manager provides product context and requirement
details to the architect in exchange for architectural expertise
in order to enhance one another’s decision making.

We elaborate on the conceptual relationship by taking the
perspective of SPM and SA their primary goals as introduced
in sections II and IIT (Figure 4). The goals are connected
with artifact flows we believe product managers and architects
to exchange. Note that you should not read these flows as
a linear route, but as an indefinite, iterative process. The
result displays the mutual contributions to their respective
goals, which we detail in this paragraph. As the primary
interface for internal and external stakeholders towards the
architect, the product manager receives a continuous stream
of market requirements and customer requests. He organizes
and selects specific product requirements to present to the
architect. The architect responds with requirement feedback,
which the product manager communicates to the appropriate
stakeholders with the intention to conquer markets and grow
market share. On the second level, the architect transfers
architectural product knowledge to the product manager to
enable collaborative requirements gathering, identification, or-
ganization, prioritization and refinement. The result is a mature
release definition, which the architect combines with product
context to develop a project strategy. Next, the architect leads
the development team to design the system, making architec-
tural design decisions based on the project strategy containing
all provided inputs. These architectural design decisions lead
to a finished product release and in turn deliver value to the
customer.

To support reciprocal information exchange, product man-
agers and architects need architecture views that relate re-
quirements and architecture by displaying information and
data on the intersection of their respective responsibilities.
Unfortunately, the approaches relating requirements and ar-
chitecture mentioned in Section II do not satisfy this need.
Their goal is to facilitate software architecture design by
developing functional requirements models. Identifying a sim-
ilar disparity, [40] introduced the Functional Architecture
Framework (FAF): an architectural view instrumentation that
aims to support requirements management for SPOs with high
requirement quantities. By linking requirements to specific

architectural application modules, requirement responsibility
can immediately be assigned to the correct individual or team.
To use the FAF, the SPM must first describe the product’s
functional architecture with a graphical architectural descrip-
tion language called the Functional Architecture Model [41].
It consists of a product context, a product scope that includes
all high granularity application modules and typically two to
three layers of sub-models. Next, the product manager assigns
all existing requirements to the appropriate submodules and
allocates newly incoming requirements in a similar manner.
Finally, when a functional requirement enters development,
the architect links his implementation solution enabling the
product manager to analyze which functional requirements
share a common technical component.

V. CASE STUDY RESEARCH APPROACH

The previous sections explicated why we believe that col-
laboration between SPM and SA is crucial for product success.
However, no empirical research that substantiates this claim by
speaking to practitioners is available. As a first step, we answer
the research question “How do software product managers
and software architects collaborate?” by conducting five case
studies with product managers and architects from five SPOs.
Each SPO originates from the Netherlands, but their age, size
and target market(s) differentiate. One SPO is an autonomous
subsidiary of a bank with several small technical teams, while
another is a 30 year old multinational with 2000 employees
buildings software supporting SMEs. Each case study consists
of an interview of approximately 1,5 hours with both a (senior)
product manager and (senior) architect.

Due to the exploratory nature of this research, a formally
structured interview or standardized questionnaire was unsuit-
able [42], [43]. Instead, we held semi-structured interviews
to allow respondents to speak freely and the interviewer to
pose follow-up questions, while maintaining the ability to
compare responses. For each interview, the end goal was
to establish how the product manager and architect at the
case study company collaborate. To this end, the interviewer
posed 7 questions such as: “What is the role of SPM in
the organization?” and “Does the organization utilize any
instrumentations to facilitate their collaboration?”.

After each interview, the interviewer put together a case
study report, describing the product manager and architect’s
role in the organization, how both roles collaborate, whether
either experienced any problems in this collaboration and
what kind of instrumentations they utilize. Based on the case
study report, the interviewer records whether the respondents
collaborate in the four collaborative activities.

Before we commenced our case studies, we examined [44]’s
guidelines for case study research. Our approach complies
with the three conditions to determine when a case study is
appropriate for your research: (1) we pose a ‘how’ research
question, (2) we do not have control of behavioral events
and (3) we focus on contemporary events. Furthermore, the
research approach adheres to the criteria for research design
quality as follows: we use multiple sources of evidence to test

construct validity, create a rich theoretical framework from
previous literature to ensure both internal and external validity
and build case study protocols and databases for reliability.

VI. RESULTS - SPM AND SA COLLABORATION PATTERNS

All case companies have similar approaches to SPM and
SA. To begin, all claim to practice agile development, which
prescribes a distinct (management) approach. The architects in
particular have loosely defined roles, which they grew into as
the company and their seniority grew. They are the technical
lead of a development team with the additional responsibility
to ensure sound architectural decisions. As [12] puts it, the
architect is considered “first among equals”, leading the de-
velopment team and communicating with relevant stakeholders
such as the product manager. Due to the organizations’ agile
approach, architects only make ADDs before the start of a
project for architecturally relevant requirements while ADDs
for regular requirements are made on an ad-hoc basis. Identi-
fying which requirements are architecturally relevant is done
during requirements refinement, which each case companies
conducts to some extent. Subsection VI-B further details this
collaborative effort.

A. Generic Findings

None of the respondents declared that transferring product
context is an important part of SPM and SA collabora-
tion. Yet, our case study architects possess deep contextual
knowledge due to two circumstances. As the product grows,
the architect’s contextual knowledge organically grows along.
When an architect works on the same product for a long
time, he is bound to establish an accurate contextual model.
Furthermore, the architects at 3 companies were part of the
product’s initial development team and thus had intimate
knowledge of the domain, while the product manager role was
introduced only after product success. Respondents argue that
these factors substitute the need for contextual clarification.
Architects do rely on SPM to communicate with customers
and users. Product managers function as intermediaries for
external stakeholder requests that might concern the architect.
Support and sales first report to the product manager, who
decides whether to escalate the issue to the architect. Any
resulting information or actions traverse the same paths.

Contrary to what previous literature prescribes [1], product
managers at our case study companies typically also assume
project management responsibilities. While each SPO gathers,
identifies, organizes, and prioritizes requirements to create new
release definitions, none had identical approaches. Despite
this difference, all product managers independently identify
and organize requirements. The responsibility and stakeholders
involved during requirements gathering and prioritization di-
verge. Three case companies have formalized meetings where
the product manager gathers requirements from the architect.
The remaining architects transfer requirements on an inciden-
tal basis. One product manager conducts prioritization inde-
pendently, only consulting the architect when necessary. At
three other SPOs the product manager relies on the architect’s

input to make informed requirement decisions. The extent
of this reliance depends on the product manager’s technical
product knowledge and capabilities. The following paraphrase
succinctly illustrates the typical difference between product
managers with an engineering and marketing background:

Alice and I are product managers at FinComp.
Alice has an engineering background, I have a lot
of experience in professional services. Before the
start of a sprint, Alice works out a first level of
architecture and validates it with the architect. I told
the architect not to even come to me with technical
questions because I cannot provide answers. Alice
can challenge architectures he comes up with, I
cannot and thus rely 100% on the architect to advice
me on technical requirements.

One SPO has a special committee to collaboratively make
decisions on requirements. Although the resulting broad stake-
holder support is beneficial, the organization loses decisiveness
and agility due to extra process overhead. The product man-
ager and architect proposed a solution:

“We’d like a portion of the release to fully be
our responsibility so we can autonomously decide
to implement some product requirements regardless
of current customer requests”

B. Important Overlapping SPM & SA Processes

Product managers and architects exchange information dur-
ing two activities: requirements gathering and refinement.
Gathering requirements from a variety of different stake-
holders is crucial as a product manager [21]. Of all the
internal stakeholders that contribute to the product manager’s
requirements gathering process, the architect is unique. He
is the only actor with the capability to identify technical
debt and formulate requirements to solve critical deficiencies.
One respondent that transitioned from engineering into SPM
clarifies the importance of formally requesting the architect
for input:

“Gathering requirements from the architect is
our most important collaborative process. Due to
my functional focus I no longer notice where code
quality is degrading and overdue maintenance is
growing.”

The quote above illustrates that even product managers with
a (strong) engineering background are unable to maintain in-
depth technical knowledge of the product(s) they manage. This
characterizes the first interdependence of SPM and SA: the
product manager is responsible for scheduling requirements
including technical maintenance, while the architect has the
domain knowledge to identify which product aspects need
maintenance. To this end, three of our case companies have
scheduled meetings to discuss technical maintenance. The
architect presents which product sections require attention and
why, the product manager shares his position from a business
perspective and together they decide what issues to invest in.
During these meetings information exchange is verbal, at times

supported by simple informal models that happen to resemble
the Functional Architecture Model by [41]. Depending on the
technical competence of the product manager, both spend less
or more energy on this communicative effort. At another case
company, technical maintenance is a standard part of each
sprint and the architect’s responsibility. While this permits
more effectiveness and autonomous decisiveness for the ar-
chitect, the risk of focusing resources on the wrong issues
increases.

Each of the case companies conducts requirement refine-
ment, though none have adapted [31]’s guidelines. Advanced
concepts such as a product management backlog and alternat-
ing sprints with development have not been formally integrated
into the organizations. Instead, SPM refines requirements
on a case by case basis into high-level definitions. Next,
during a formalized (bi-)weekly meeting, product management
refines requirements with the development team and architect
in an agile, iterative manner. The product manager attends
these meetings to coordinate and support the development
team. He answers questions development poses, validates their
interpretation of his work and might even lead the meeting.
Different topics come up, at times including requirement vali-
dation and dependency linking; sub-activities of requirements
identification and organizing. Two product managers note that
it is imperative to convey why they want to develop a feature.
This enables developers to autonomously answer questions,
preventing additional information requests during development
and/or incorrectly implemented features. Requirements go
through as many refinement iterations as necessary until the
requirement definition has sufficient detail for development to
start developing in the next sprint. Effectively, SPM and SA
are going through the Twin Peaks stages until they hash out
the lowest level of detail from the requirements perspective.
Due to the frequency of this collaboration and importance to
creating a winning product and delivering value to customers,
we claim that requirement refinement is the most important
process during which product managers and architects collab-
orate and exchange information.

C. Instrumentations Facilitating SA & SPM Information Ex-
change

All respondents recognize that they use a variety of tools,
but note that few are applicable to this research context. For
example, each SPO uses a tool to track features such as Jira,
OnTime or Pivotal Tracker. These tools are central to their
development activities, primarily benefiting short term project
management instead of the more conceptual information ex-
change between an architect and product manager.

Just one of the case companies claims to use a tool specifi-
cally to facilitate information exchange between technical and
less technical roles: Enterprise Architect (EA). Although EA
has a variety of features, this company primarily used its
modeling capabilities to create both technical and functional
models of their product which are connected by a data model.
The product manager discusses their EA experiences:

“EA improves [people] alignment and [commu-
nication] clarity. Recording ideas in models well
enables us to discourse efficiently; explaining how,
why and what you want becomes comprehensible.
In turn, translating functionality and business re-
quirements into technical requirements is now sig-
nificantly more logical. Furthermore, because all
stakeholders operate around the different models,
alignment occurs far earlier in the lifecycle.”

Despite these advantages, respondents from the other four
case companies explicitly stressed their aversion to static
documentation tools. Although none object to modeling itself,
they warn against meticulously creating models for company-
wide usage. Because, despite their meticulous effort, modeling
is a human activity that will produce errors. One respondent
stated: “No documentation is better than outdated and thus
wrong documentation”, to which his co-interviewee, a product
manager with limited technical background, added the follow-
ing nuance: “If it’s not a living document, it does not serve
a purpose. If it’s got a lifespan of X amount of time, don’t
invest in it. If you know it’s a living document that you’re
going to refer to for the rest of your life, then nobody has
an issue updating it.”. Yet, neither could think of a document
within their SPO with this kind of urgency.

Instead, these respondents create rough models, (functional,
data, flow, etc) on a whiteboard when necessary. Aside from
always being up to date, this approach permits hands-on
collaboration on the whiteboard and communicative flexibility
in what aspects of the model you draw, directing focus to
only those parts that matter. Often, these models resemble the
Functional Architecture Modeling technique [41], consisting
of high-level elements that exchange high-level data objects.
When participants deem a specific architectural approach is
desirable, someone photographs the drawing and adds it to
the requirement specification. The drawing then provides high-
level guidance without becoming a fully thought-out imple-
mentation plan.

VII. DISCUSSION

Case study analysis shows that all of the SPOs have some
form of SPM and SA interdependence, typically addressed
at a (bi-)weekly meeting. Although the formalization degree
of these meetings varies, requirements are a common central
topic. We found direct indications for three out of four collab-
orative activities presented in subsection IV: (1) requirements
gathering, (2) prioritization and (3) refinement. Much to our
surprise, respondents indicate that architects do not need (4)
product context clarification from product managers to identify
important QAs and formulate correct architectural approaches.

The case study SPOs avoid having to communicate product
context to new architects by not hiring external recruits for
architectural roles. Instead, they promote software engineers
whose contextual knowledge already is close to on par with the
product manager. Furthermore, the architect receives sufficient
contemporary contextual information in an implicit manner
during his involvement with the product. However, we believe

explicit context exchange is beneficial for the architect’s
understanding in the long run. One architect clarifies: “We
used to be our own customers. Nowadays we are out of touch
with what it’s like to work in the domain. Because we haven’t
done the work in 15 years and the field has evolved drastically,
we need to test our assumptions with customers.”

All other requirement related activities are part of the
collaboration: product managers request SA input for require-
ments prioritization, the architect has a unique contribution for
requirements gathering and together they refine requirements
into sufficient detail for development. Additionally, during
refinement different topics come up including requirement
validation and dependency linking. Through these two sub-
activities, they collaborate on requirements identification and
organization indirectly as well. Finally, the product manager
acts as an intermediary between the architect and customer
requests and requirements.

Requirements gathering and refinement are particularly in-
teresting due to the complex, reciprocal information exchange
that takes place. When a product manager gathers require-
ments from internal stakeholders, the goal is to include the
perspective of all relevant stakeholders [45] to gain insight into
what issues are currently important within the organization.
Unfortunately, there is no specific literature describing how
product managers gather requirements, let alone how specific
stakeholders take part in this activity. Without this information,
formulating approaches or designing instrumentations to sup-
port SPM and SA alignment is impossible. Our case studies
show that architects contribute a unique class of requirements
because the product manager is unable to reliably identify
technical debt himself. Thus the architect attempts to clarify
the product’s weak aspects in formalized meetings. However,
he can only do so by conveying technical details that are
conceptually out of scope for the product manager.

The extent to which our product management respondents
participate in requirements refinement is out of scope in a
similar manner. In theory, development conducts requirement
refinement to add sufficient detail to underspecified require-
ments, enabling each team member to fulfill any requirement
in a later stage. However, four of the product managers partic-
ipate in requirements refinement sessions. In their experience,
the independent, document-driven approach for refinement
described in [31] generates too many requests for more
details. Instead, architects refine requirements collaboratively
with product managers to resolve impediments as early and
effectively as possible.

These findings enable us to formulate an answer to our main
research question. Software product managers and software
architects collaborate in three ways: they exchange information
to gather requirements, collectively prioritize requirements
and iteratively refine requirements selected for a release.
These three activities have large, direct influence on product
success. After all, gathering, selecting and refining the right
requirements in the right manner is a prerequisite to delivering
the right value to customers.

Consequentially, aligning involved stakeholders in these
tasks is imperative to creating a winning product. Figure 4
presented the reciprocal contributions between SPM and SA,
demonstrating that the key to alignment is facilitating their
different forms of information exchange by creating a shared
understanding of the product. Models that both stakeholders
are able to reason about and discuss have the potential to attain
this goal. However, of our respondents, only one SPO utilizes
formalized technical and data models structured in a company-
wide standardized manner. Although their experience with
the tool is positive, all other respondents note one critical
drawback: human-made models are outdated, wrong or both
and using them will lead to corresponding decisions.

These skeptical respondents rely solely on the most basic
communicative tool, drawing on a whiteboard on an incidental
basis. [46] uncovered similar results, noting that architects
primarily utilize whiteboard sketches to communicate archi-
tecture models to secondary stakeholders. While they claim
the benefits of these transient models are great, they forgo
SA’s analytical and educational merits. Moreover, we question
the accuracy and timeliness of these high-level model sketches
in practice. Especially considering that as product complexity
grows and subsequently the number of people involved in
development, accurately depicting an SA from memory be-
comes exponentially more difficult. This presents us with a
conundrum: if neither formal nor incidentally drawn models
are applicable for facilitating SPM and SA alignment, what
approach should an SPO take?

VIII. PROPOSED SOLUTION

SPOs face a dilemma in their efforts to align SPM and
SA. Our case studies show that SPOs have two approaches
to documenting a product: multiple, formalized models or
no models at all. Over time, the former leads to outdated,
inaccurate models that harm the organization, while the latter
forgoes all benefits of models by relying on stakeholders’ com-
municative competence to exchanging the right information.
We require an approach that utilizes models understandable for
both stakeholders and ensures their timeliness and accuracy.

Combining the literature review and results from our case
studies, we identify four architectural model uses relevant for
product software: (1) incidental models which stakeholders
draw when the need presents itself during meetings, (2) infor-
mal models that record incidental models for later reference
if necessary, (3) discussion models depict the product on a
high (functional) level to enable technical stakeholders to
exchange information with non-technical stakeholders and (4)
structured models take a formalized approach at depicting
architecture such as data models for documentation purposes,
possibly captured in tooling. Of these, discussion models
(DMs) are particularly relevant for our purposes. Anyone
can create a simple DM by using requirements as guidance
and DMs can have multiple degrees of detail for different
stakeholders. These characteristics adhere to the requirements
argued by [47] for aligning requirements with architecture:

R

refinement
SHOULD BE g
roadmapping

¢ realization

architecture
reconstruction

A

TO BE

Fig. 5. Accurate Architectural Models Approach

requirements are decomposed into fine grained specifications
and organized in a similar manner to the system’s architecture.

Unfortunately however, DMs become outdated and inaccu-
rate as well. While [40] prescribes continuously monitoring
the architecture and adjusting the FAF when it is no longer
accurate, the following scenario happens in practice: over
time the discussion model (DM) starts to diverge from the
implemented situation. The architect, however, is confident
the DM is accurate enough for the task at hand and chooses
not to update it or forgets to do so after implementation.
Meanwhile, the product manager re-uses the inaccurate model
for new requirements. Three iterations later the DM diverges
from reality to such an extent that it is useless and both
stakeholders complain when they have to create a new one.
Concisely, human error and/or negligence causes DMs to
become outdated, wrong or both as well.

While many different models exist, SPOs lack a structured
approach to prevent model divergence from the implemented
situation. To this end we propose the Accurate Architectural
Models Approach (AAMA) that engages both the product
manager and architect to ensure ongoing accuracy and timeli-
ness. AAMA consists of three co-existing model instantiations:
a current technical truth, a future design and a combination of
the two. This division is similar to ones used in architecture
compliance and auditing [48], [49]. To work with these
models, stakeholders follow four distinct steps as shown in
Figure 5.

e AS IS The product’s current situation as seen from the
architect’s technical perspective.

« SHOULD BE The product’s current design, consists of
the current situation and all pending design changes based
on new requirements.

« TO BE A future design of the product based on new
requirements to be included in a release.

This paragraph presents a scenario introducing how SPOs can
apply AAMA to improve SPM and SA alignment. As a prod-
uct matures, the product manager and architect recognize the
need to approach their collaboration in a more sophisticated
manner and decide to apply AAMA to their discussion models.
Together they create an origin model based on the product’s
current situation to facilitate their information exchange. On
this originating moment, the AS IS and SHOULD BE are
identical and both stakeholders agree to apply AAMA by
adhering to the following four steps.

1) Roadmapping New requirements prompt the product
manager to use the origin model to create a TO BE.

2) Refinement In the second step, both stakeholders refine
the TO BE to create a SHOULD BE.

3) Realization The architect consults the SHOULD BE to
realize the new requirements.

4) Architecture Reconstruction After realization, a new
AS IS situation materializes which diverges from the
SHOULD BE, prompting the architect to conduct ar-
chitecture reconstruction to warrant the SHOULD BE’s
accuracy.

Finally, the cycle restarts when the product manager uses the
newly updated and accurate SHOULD BE as input.

Applying AAMA has three consequences for the models
position in the organization. (1) Frequent reviews and updates
makes the DM a living model, preventing outdated models and
human made errors. (2) By ensuring that architects as well as
product managers examine and update the DM on a frequent
basis, both have a deep understanding of the recent changes to
the product. (3) Having a high architectural view available on
demand enables all stakeholders to create incidental models
of strictly those product sections relevant to the discussion. In
turn, these consequences have three positive influences on the
reciprocal contributions of SPM and SA:

1) The common view and mutual deep understanding as-
sists the frequent communication on product require-
ments and requirements feedback.

2) The architect transfers the right architectural product
knowledge more effectively and efficiently because he
knows the extent of the product manager’s architectural
knowledge.

3) AAMA’s iterative TO BE DM refinement aligns with the
Twin Peaks model. The product manager expresses re-
quirements in the TO BE DM, which the architect exam-
ines for implementation and requests further refinement
details from the product manager. The resulting resulting
release definition is more complete and unambiguous,
contributing to the architect’s technical product strategy.

Although AAMA prevents cumulative DM divergence from
the current implementation, one major shortcoming remains
in the product software context. During implementation, the
product manager is already processing new, continuously
incoming requirements into a new TO BE DM. The moment
the SHOULD BE DM is updated, the product manager has
already produced a new TO BE DM, possibly creating a
divergence. This divergence will result in either the product
manager having to alter his DM or the architect to work with
an inaccurate specification, reducing the DM’s utility.
AAMA is a giant leap forwards, but requires further
improvements to achieve continuous model accuracy. Some
respondents wish to automatically generate high-level archi-
tecture views from data supplied by instrumentations they
already use. A sentiment echoed in literature: “the most useful
forms of documentation are views of the software that can be
automatically generated” [50]. Automatically generating a DM
from source code and subsequently connecting all elements
to requirements from the requirement database is an exciting
concept. However, automatic architecture reconstruction to
date has only a few incomplete successes for specific uses

cases [51], [52]. The accuracy and relevance of an instrument
that automatically generates architectural views is doubtful
and the prospect of having the architect adjust the entire view
manually is considerably less exciting.

Instead, future design science research will use this qual-
itative study’s results to formulate an automated prototype.
It will unite the three different DM instantiations into one
shared, digital model to prevent divergence at any stage. After
prototype improvement interviews with practitioners, we plan
to conduct a survey to determine Dutch product managers’
and software architects’ usage intention towards AAMA.

IX. CONCLUSION

The start of this paper asks “how do software product
managers and software architects collaborate?”. By means of
five elaborate case studies we uncover two critical processes
where product managers and architects exchange information:
requirements gathering and requirements refinement. These
activities require reciprocal information exchange on a high
technical level to formulate and refine the right requirements
in the right way. The successful execution of these processes
is a critical driver to product success. Respondents, however,
rely on primitive methods and lack a structured approach
that warrants SPM and SA alignment. We believe SPOs can
improve their SPM and SA alignment by adopting discussion
models and propose the Accurate Architectural Models Ap-
proach (AAMA) to prevent architectural model divergence.

In future research, we aim to further elaborate and formalize
the SPM and SA interplay in order to benefit their alignment
and resolve discrepancies between current literature and the
findings in this paper. For instance, we intend to determine
whether requirements refinement is truly out of scope for
product managers, internal promotions always fill architectural
vacancies and validate AAMA’s potential benefits compared to
updating models on an incidental basis. Furthermore, design-
ing and validating an instrumentation to facilitate information
exchange further establishes the research domain. Finally, a
longitudinal study measuring the effect of applying AAMA
and/or facilitating instrumentations will validate the resulting
artifacts and impact of our efforts.

REFERENCES

[1] C. Ebert, “The Impacts of Software Product Management,” Journal of
Systems and Software, vol. 6, no. 80, pp. 850-861, 2007.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Proceedings of WICSA 05, 2005, pp. 109-120.

[3] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and

R. Little, Documenting Software Architectures: Views and Beyond.

Pearson Education, 2002.

B. Nuseibeh, “Weaving together requirements and architectures,” Com-

puter, vol. 34, no. 3, pp. 115-119, Mar. 2001.

[5] P. T. Ward and S. J. Mellor, Structured Development for Real-Time
Systems: Vol. I: Introduction and Tools. Prentice Hall, 1986.

[6] M. Khurum and T. Gorschek, “A method for alignment evaluation
of product strategies among stakeholders (mass) in software intensive
product development,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 7, pp. 494-516, 2011.

[71 B. Regnell, R. Berntsson Svensson, and T. Olsson, “Supporting
roadmapping of quality requirements,” Software, IEEE, vol. 25, no. 2,
pp. 4247, 2008.

[4

[l

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

K. Wnuk, B. Regnell, and C. Schrewelius, “Architecting and coordinat-
ing thousands of requirements an industrial case study,” in Requirements
Engineering: Foundation for Software Quality, ser. LNCS. Springer,
2009, vol. 5512, pp. 118-123.

D. Condon, Software Product Management.
Aspatore Books, 2002.

A. Helferich, K. Schmid, and G. Herzwurm, “Product management for
software product lines: An unsolved problem?” Communications of the
{ACM}, vol. 49, no. 12, pp. 66-67, Dec. 2006.

M. W. Maier, D. Emery, and R. Hilliard, “Software architecture: Intro-
ducing ieee standard 1471, Computer, vol. 34, no. 4, pp. 107-109, Apr
2001.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, 2010.

J. ISO, “IEC 25010: 2011: Systems and software engineering—systems
and software quality requirements and evaluation (square)-system and
software quality models,” International Organization for Standardiza-
tion, 2011.

J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti, “Re-
lating software requirements and architectures using problem frames,”
in IEEE International Requirements Engineering Conference (RE’02),
2002, pp. 137-144.

P. Griinbacher, A. Egyed, and N. Medvidovic, “Reconciling software
requirements and architectures with intermediate models,” Software and
Systems Modeling, vol. 3, no. 3, pp. 235-253, 2004.

R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, “Compass:
Composition-centric mapping of aspectual requirements to architecture,”
in Transactions on Aspect-Oriented Software Development IV, ser.
LNCS. Springer, 2007, vol. 4640, pp. 3-53.

K. M. van Hee, J. J. A. Keiren, R. D. J. Post, N. Sidorova, and J. M.
E. M. van der Werf, “Designing case handling systems,” in Transactions
on Petri Nets and Other Models of Concurrency 1. Springer, Berlin,
2008, vol. 5100, pp. 119 — 133.

P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistrk, Relating
Software Requirements and Architectures, 1st ed. Springer, 2011.

H. Vogl, K. Lehner, P. Grunbacher, and A. Egyed, “Reconciling re-
quirements and architectures with the cbsp approach in an iphone app
project,” in Requirements Engineering Conference (RE), 2011 19th IEEE
International, Aug 2011, pp. 273-278.

C. Chen, D. Shao, and D. Perry, “An exploratory case study using cbsp
and archium,” in Second Workshop on Sharing and Reusing Architectural
Knowledge - Architecture, Rationale and Design Intent. 1EEE, May
2007, pp. 3-3.

W. Bekkers, 1. van de Weerd, M. Spruit, and S. Brinkkemper, “A
Framework for Process Improvement in Software Product Management,”
in Proceedings of EuroSPI, 2010a, pp. 1-12.

C. Ebert, “Software Product Management,” Crosstalk, vol. 22, no. 1, pp.
15-19, 2009.

L. Xu and S. Brinkkemper, “Concepts of Product Software,” in European
Journal of Information Systems, vol. 16, no. 5, 2007, pp. 531-541.

A. Maglyas, U. Nikula, and K. Smolander, “What do practitioners
mean when they talk about product management?” in 20th International
Requirements Engineering Conference (RE), Sept 2012, pp. 261-266.
I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and
L. Bijlsma, “On the creation of a reference framework for software
product management: Validation and tool support,” in International
Workshop on Software Product Management, 2006, pp. 3—12.

L. Gorchels, The Product Manager’s Handbook: The Complete Product
Management Resource (2nd edition), 2nd ed. Columbus, OH, USA:
McGraw-Hill, 2000.

C. Ebert and S. Brinkkemper, “Software product management an
industry evaluation,” Journal of Systems and Software, no. 0, pp. —,
2014.

S. Fricker, “Software product management,” in Software for People, ser.
Management for Professionals. Springer, 2012, pp. 53-81.

A. Maglyas, U. Nikula, and K. Smolander, “What do we know about
software product management? - a systematic mapping study,” in Soft-
ware Product Management (IWSPM), 2011 Fifth International Workshop
on, Aug 2011, pp. 26-35.

H.-B. Kittlaus and P. N. Clough, Software Product Management and
Pricing: Key Success Factors for Software Organizations. Berlin,
Germany: Springer, 2009.

Boston, Massachusetts:

[31]

[32]

[33]

[34]

[35]

(36]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers, “The agile
requirements refinery: Applying {SCRUM} principles to software prod-

uct management,” Information and Software Technology, vol. 53, no. 1,
pp. 58 — 70, 2011.

A. M. Davis, Just Enough Requirements Management: Where Software
Development Meets Marketing. New York, NY, USA: Dorset House
Publishing Co., Inc., 2005.

B. Nuseibeh and S. Easterbrook, “Requirements engineering: A
roadmap,” in The Future of Software Engineering, ser. ICSE "00. New
York, NY, USA: ACM, 2000, pp. 35-46.

C. Potts, “Invented Requirements and Imagined Customers: Require-
ments Engineering for Off-the-Shelf Software,” in Proceedings of the
Second IEEE International Symposium on Requirements Engineering,
1995.

L. Karlsson, sa G. Dahlstedt, B. Regnell, J. N. och Dag, and A. Pers-
son, “Requirements engineering challenges in market-driven software
development an interview study with practitioners,” Information and
Software Technology, vol. 49, no. 6, pp. 588 — 604, 2007.

P. Sawyer, I. Sommerville, and G. Kotonya, “Improving market-driven
re processes,” in Proceedings of the International Conference on Product
Focused Software Process Improvement, vol. 195, Oulu, Finland, 1999,
pp. 222-236.

J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67-74, 1997.

J. Natt och Dag, B. Regnell, V. Gervasi, and S. Brinkkemper, “A
linguistic-engineering approach to large-scale requirements manage-
ment,” Software, IEEE, vol. 22, no. 1, pp. 32-39, 2005.

J. Kabbedijk, S. Brinkkemper, S. Jansen, and B. van der Veldt, “Cus-
tomer involvement in requirements management: Lessons from mass
market software development,” in Requirements Engineering Confer-
ence, 2009. RE '09. 17th IEEE International, 2009, pp. 281-286.

T. Salfischberger, I. van de Weerd, and S. Brinkkemper, “The func-
tional architecture framework for organizing high volume requirements
management,” in Software Product Management (IWSPM), 2011 Fifth
International Workshop on, Aug 2011, pp. 17-25.

S. Brinkkemper and S. Pachidi, “Functional architecture modeling for
the software product industry,” in Software Architecture, ser. LNCS.
Springer, 2010, vol. 6285, pp. 198-213.

P. Corbetta, Social Research: Theory, Methods and Techniques. London:
Sage Publications, 2003.

A. Kajornboon, “Using Interviews as Research Instruments,” E-Journal
for Research Teachers, vol. 2, no. 1, 2005.

R. K. Yin, Case Study Research - Design and Methods.
Publications, 2009.

W. Bekkers, M. Spruit, I. van de Weerd, R. van Vliet, and A. Mahieu,
“A situational assessment method for software product management,” in
Proceedings of ECIS, Pretoria, South-Africa, 2010b, pp. 22-34.

M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: How and why software developers use drawings,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI *07. New York, NY, USA: ACM, 2007, pp. 557-566.
M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. E. Heimdahl,
and S. Rayadurgam, “Your “what” is my “how”: Iteration and hierarchy
in system design,” IEEE Software, vol. 30, no. 2, pp. 54-60, 2013.

R. Koschke and D. Simon, “Hierarchical reflexion models,” in Pro-
ceedings of the 10th Working Conference on Reverse Engineering, ser.
WCRE °03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 36—

W. van der Aalst, K. van Hee, J. M. van der Werf, A. Kumar, and
M. Verdonk, “Conceptual model for online auditing,” Decision Support
Systems, vol. 50, no. 3, pp. 636 — 647, 2011.

M. Mirakhorli and J. Cleland-Huang, “Traversing the twin peaks,” IEEE
Software, vol. 30, no. 2, pp. 30-36, 2013.

F. Schmidt, S. MacDonell, and A. Connor, “An automatic architecture
reconstruction and refactoring framework,” in Software Engineering
Research, Management and Applications 2011, ser. SCI, R. Lee, Ed.
Springer, 2012, vol. 377, pp. 95-111.

F. A. Fontana and M. Zanoni, “A tool for design pattern detection and
software architecture reconstruction,” Information Sciences, vol. 181,
no. 7, pp. 1306 — 1324, 2011.

SAGE

