
Bridging the Gap between Software Platforms:
A Template Method for Software Evolution

Gerard Nijboer
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands
g.nijboer@students.uu.nl

Henk van der Schuur
AFAS Software

Leusden, The Netherlands
h.vdschuur@afas.nl

Jan Martijn E. M. van der Werf
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands
j.m.e.m.vanderwerf@uu.nl

Sjaak Brinkkemper
Department of Information
and Computing Sciences

Utrecht University
Utrecht, The Netherlands

s.brinkkemper@uu.nl

Abstract—To prevent issues arising from legacy software
platforms, adapting to changing customer needs by software
evolution is a growing concern of software organizations. How-
ever, current practices are pragmatic and subjective, which
restricts benchmarking and reduces efficiency. In order to im-
prove evolutionary practices, this paper proposes the Software
Functionality Evolution Method (SFEM). The SFEM provides
a software vendor with input for product roadmapping, by
mapping functionality between software platforms. Mappings are
based on characteristics and constraints of functionality, personas
and software platforms. An incremental method engineering
approach is put to practice, in which the template method
is instantiated and improved over multiple cases. Cases show
that the method contributes to efficient reasoning and strategic
decision making in software evolution for software product
managers.

I. INTRODUCTION

The current pace of technological developments offers op-
portunities to software developing organizations concerning
software platforms and applications. In order to avoid issues
caused by legacy software platforms, concerning costs, main-
tenance, accessibility and extensibility [1], emerging technolo-
gies can help organizations to innovate, improve efficiencies,
and realize new business opportunities [2]. Software evolution
concerns the adaption of capabilities and functionality of a
system, in order to meet user needs [3].

Currently, no structured approach exists which assists in the
evolution of a software product by mapping functionality on
new software platforms. Thus, a gap exists in the evolutionary
process, as a mapping of functionality between platforms
needs to be created, yet it is uncertain what functionality
should be included. A structured approach enables comparison
of performance and results, and increases efficiency in method
instantiations.

Considering the problem statement above, the main research
question of this paper is: How could a method assist in soft-
ware product evolution through mapping functionality between
software platforms?

This paper proposes a method, the Software Functionality
Evolution Method (SFEM), which assists in the evolution of a
software product. It is designed for software product managers,
as this organizational role is responsible for strategic decision

making [4], including a software product’s lifecycle [5]. With
this audience in mind, the evolutionary process is considered
with a focus on functional, rather than technical properties
and constraints. The constraints, raised by characteristics of
personas, platforms and functionality, determine the mapping
and mapping priority of functionality.

The SPM Competence Model [5] proposes 15 focus areas
in the field of Software Product Management (SPM) practices.
To position this research and the designed method in the
field of SPM, Figure 1 visualizes the relationships with the
different focus areas and competencies. Three categories are
applied to related focus areas: (1) triggers which instantiate
the method, (2) execution for the mutual support of activities,
and (3) output for those focus areas that have an interest in
the results of an instantiation.

An instantiation of the method can be triggered by activities
within the focus areas Market analysis and Product lifecycle
management. An opportunity can be identified, such as a new
software platform, which generates a competitive advantage
for the software company if implemented correctly.

The SFEM assists in the execution of activities within the
focus areas Requirements gathering, Requirements organizing
and Requirements prioritization. By mapping existing func-
tionality between platforms, requirements are gathered and
prioritized based on their added value in the market and
product portfolio.

The results of an instantiation of the method provides the
organization with information which can be used in activities
in the focus areas Release definition, Roadmap intelligence and
Product roadmapping. On the short term, mappings of func-
tionality help to identify which requirements add significant
value to a new release. On the long term, mappings assist in
the creation of themes for the product roadmap.

This introduction is followed by an explanation of the
research approach in Section II. The Software Functionality
Evolution Method is presented in Section III. In Section IV,
a categorization for method increments is presented, which
enables reflection on the process of incremental method engi-
neering. The results of the method instantiations in cases are
presented in Section V. Section VI contextualizes the research
with related literature, followed by a discussion in Section VII

978-1-4799-6358-4/14/$31.00 c© 2014 IEEE IWSPM 2014, Karlskrona, Sweden11

Fig. 1. Positioning of the research to the SPM Competence Model

and the conclusion in Section VIII.

II. RESEARCH APPROACH

The research is based on a combination of a literature review
and interviews with domain experts at a Dutch Enterprise
Resource Planning (ERP) software vendor. The approach
followed in the literature review is inspired by the PRISMA
2009 checklist [6].

By means of method engineering [7]–[9], the initial research
results in a conceptual, initial version of the method, which is
called the Software Functionality Evolution Method (SFEM).
Different from a situational method [7], [8], this template
method prescribes what activities and concepts are to be
implemented, rather than what an instantiation of the method
would look like [10].

In two cases at the ERP software vendor, the template
method is instantiated, of which a backlog is recorded for
analysis purposes. This backlog contains rationales on the
instantiation of activities and concepts, and decisions made
accordingly. A structured approach towards the cases is fol-
lowed [11], [12].

The performance of the template method instantiation is
analyzed, in order to identify opportunities to improve the

Fig. 2. Template method instantiation [10]

method. The cycle of method engineering, template method
instantiation and method improvement is repeated until a
stable version of the SFEM is engineered. The method will
be contributed to the Software Product Management Body
of Knowledge (SPMBOK) [13], classifying the research as
design science [14].

The results of the initial research lay a basis for the design of
the first version of the template method. The template method
and a case instantiation are analyzed, which results in a set
of method increments to improve the template method. The
process of instantiation and analysis is repeated in a second
case, which results in the final template method.

III. SOFTWARE FUNCTIONALITY EVOLUTION METHOD

The Software Functionality Evolution Method (SFEM) is
a template method which assists a software developing orga-
nization in the evolution of a software product by means of
mapping functionality between software platforms. A template
method is different from a situational method as it serves
as a template for an instantiation, rather than describing the
instantiation of the situational method itself. In Figure 2, the
concept of template method instantiation is visualized [10].
The figure indicates how the open activities and concepts
of a template method may result in extra elements after
instantiation.

The method is visualized as a Process-Deliverable Dia-
gram (PDD), which is a technique used for modeling activities
and artifacts of a certain process [9]. On the left side of the
diagram are the activities of the method’s process, of which
the notation is based on the UML activity diagram [15]. On
the right side of the diagram, deliverables are visualized as
concepts to indicate what artifacts are produced by a template
method instantiation, of which the notation is based on the
UML class diagram [15].

The template method’s PDD is shown in Figure 3. The cor-
responding concepts are explained in Section III-A, followed
by supporting theories in Section III-B.

A. Concepts

The concepts of the SFEM are the artifacts of a template
method instantiation, produced by the execution of activities
in the method. We introduce a definition of each concept in
the method, followed by supporting theories in Section III-B.

PROJECT PLAN — The PROJECT PLAN is a document
that describes the technical and management approach to be
followed for a project. The plan typically describes the work

12

Fig. 3. Software Functionality Evolution Method as a Process-Deliverable Diagram

13

to be done, the resources required, the methods to be used,
the procedures to be followed, the schedules to be met, and
the way that the project will be organized [16].

STAKEHOLDER — A STAKEHOLDER is an individual or
organization having a right, share, claim or interest in a
system or in its possession of characteristics that meet their
needs and expectations [17]. A STAKEHOLDER’s Role in a
template method instantiation can be organized as described
in Section III-B1.

DOMAIN ONTOLOGY — An ontology describes the ENTI-
TIES within the domain in discourse, and how these ENTITIES
are interrelated [18]. The DOMAIN ONTOLOGY represents the
domain in which the software product is designed to operate,
the domain of discourse.

ENTITY — In computer programming, an ENTITY is any
item that can be named or denoted in a program. For example,
a data item, program statement, or subprogram. [16].

FUNCTIONALITY — FUNCTIONALITY concerns the capa-
bilities of the various computational, user interface, input,
output, data management, and other features provided by a
product [19].

DATA MODEL — A DATA MODEL identifies the ENTI-
TIES, domains (attributes), and relationships (associations)
with other data and provides the conceptual view of the data
and the relationships among data [20].

PERSONA — PERSONAS are defined as representations of
the actual users of a system, defined by the goals they aim
to accomplish. They are hypothetical archetypes of actual
users [21].

SOFTWARE PLATFORM — A platform is the combination
of an operating system and hardware that makes up the
operating environment in which a program runs [22]. Thus,
a SOFTWARE PLATFORM defines the environment in which a
software product is designed to operate.

SCENARIO — The combination of possible and relevant ap-
pearances of PERSONAS on SOFTWARE PLATFORMS creates an
instantiation of the concept SCENARIO. A SCENARIO is used
to map FUNCTIONALITY by MAPPINGS and their Priorities.

MAPPING — A MAPPING is an assigned correspondence
between two things that is represented as a set of ordered
pairs [20]. The concepts is instantiated by the combination of a
SCENARIO with FUNCTIONALITY. The Priority of a MAPPING
is determined based on the importance of the FUNCTIONALITY
for the given SCENARIO. If a MAPPING has no Priority
assigned, it is considered to be a candidate.

DESIGN RATIONALE — A DESIGN RATIONALE is defined
as information capturing the reasoning of the designer that
led to the system as designed, including design options, trade-
offs considered, decisions made, and the justifications of those
decisions [23]. It presents the arguments behind a MAPPING
and its Priority.

REPORT — A REPORT is an information item that describes
the results of activities such as investigations, observations,
assessments, or tests [24]. The results of an instantiation
are communicated to selected STAKEHOLDERS by a REPORT,
which is designed to suit the STAKEHOLDER’s interests.

Fig. 4. Method Stakeholder Classification Matrix

B. Theoretical Embedding

To support the instantiation of activities and concepts of
the SFEM, this research has explored various theories for the
embedding of the method. These theories assist an analyst in
the instantiation of the template method, by means of extra
background information and supporting techniques for the
implementation of processes.

1) Method Stakeholder Classification Matrix: In method
engineering, it is possible that a process is explicitly carried
out by a specific individual or organizational role. In that case,
the role is indicated in the activity depicted in the method [9].
On the other hand, stakeholders are involved in a method
instantiation to provide or consume information.

To help identify these stakeholders and apply a classification
to their role in the method’s instantiation, we introduce the
Method Stakeholder Classification Matrix (MSCM), presented
in Figure 4. The role of the stakeholder is dependent on the
degree of participation in the instantiation of the template
method, and the degree of interaction with the deliverables
of the instantiation.

The MSCM is applicable in the activity Identify stakehold-
ers, and makes the process of describing stakeholders more
efficient. The selected value from the matrix can be used as
the Role of the concept STAKEHOLDER.

2) Software Functionality Identification: To extract entities
and their functionality from existent software products and
underlying architectures, many techniques have already been
discussed in scientific literature. Given the audience of this
template method, as discussed in Section I, we have limited
the exploration of such techniques by excluding technical
approaches such as code-analysis. The techniques are appli-
cable to the activities within the main activity Functionality
identification, and the concepts resulting from these activities.

The analysis of a user manual allows for an analyst to
identify functionality as it was designed and documented
for the user. Natural Language Processing [25] can support
analysis of such texts by tokenization, and generating tag
clouds.

14

Architecture reconstruction, the process where the “as-built”
architecture of an implemented system is obtained from an
existing legacy system [26], helps in the identification of
relationships among entities, and how this is translated into
functionality. Different tools for reconstruction exist, such
as ARMIN [26] and the Dali Architecture Reconstruction
workbench [27].

A categorization of architecture reconstruction
approaches [28] distinguishes manual architecture
reconstruction, manual reconstruction with tool support,
query languages for writing patterns to build aggregations
automatically, and other techniques, such as clustering, data
mining and architecture description languages.

To support the identification of functionality, the application
of a functionality classifier to entities assists in covering a
large portion of the functionality. Examples of such classifiers
include CRUD [29], BREAD [30] and read-only/maintain.

3) Scenarios of Personas and Software Platforms: In the
template method, the concept SCENARIO plays a central role
in the mapping of functionality between software platforms.
As described in Section III-A, a scenario is the appearance
of a persona on a given software platform. A persona may
appear on one or more software platforms, and a software
platform may host one or more appearances of personas. It
is the combination of personas on platforms that is used to
create the mapping of functionality, indicating the priority of
the functionality for a given scenario.

As it is not desirable to let an actual user directly influence
the designing process [21], the use of pretend users as personas
is a good way to represent the actual users during systems
design. Different sources [21], [31]–[33] have contributed to
the following focus areas in the description of personas:

Characteristics — Make the persona live in the minds of
designers by giving him/her characteristics like a name, photo,
demographic data and attitudes.
Needs and goals — Explicate what a persona wishes to
achieve, which can be achieved by the use of a software
product. Goals can be classified as life goals, experience goals
and purpose goals [34].
Skills and competencies — Driven by experience and knowl-
edge, skills and competencies define a persona’s abilities, and
how they are limited in their actions.
Constraints — The separate definition of constraints, which
may reside from other focus areas, puts extra emphasis on the
inability of personas. These constraints are of particular inter-
est when mapping functionality in the Functionality mapping
activity phase of the template method.

Platforms, defined as “a foundation technology or set of
components used beyond a single firm that brings together
multiple parties for a common purpose or recurring prob-
lem” [35], represent opportunities for new software applica-
tions which a software vendor might adopt in the evolution
of a software product. Four focus areas have been defined to
help in the description of software platforms:

Platform type — A classification of the platform, either
being desktop, web, mobile or wearable [36], [37] or internal
platform, supply chain platform, industry platform or two-
sided market [38].
SWOT analysis — The analysis of strengths, weaknesses,
opportunities and threats of a software platform explicates the
potential of the platform in the software product evolution.
Functional context and constraints — Given the functional
context of a platform, either virtual or physical, it may enable
or restrict the mapping of certain functionality.
Technical context and constraints — Technical opportunities
or constraints may allow or disallow for the mapping of
functionality to a software platform.

4) Mapping and Prioritization: The mapping of functional-
ity on scenarios is the main goal of the template method. The
activities Review mapping candidates and Prioritize mapping
candidates in the PDD of the SFEM are conducted in a
group session with relevant stakeholders, in which the mapping
and mapping priority of functionality is discussed. A variety
of requirements prioritization techniques exist [39], [40], of
which the selection of the correct technique is dependent on
the complexity of the project at hand.

Techniques which are relevant in the prioritization of
requirements include the Binary Priority List [41], cumu-
lative voting [42], ranking [39], the Wiegers’ prioritiza-
tion model [43], and priority groups [42], [44] such as
MoSCoW [45] and requirements triage [46].

Creating a mapping is dependent on the characteristics
and constraints of the persona and software platform of a
scenario, and the characteristics and constraints of the regarded
functionality. The priority assigned determines the importance
of the mapping, compared to other mappings of functionality.

A mapping may have one or more instantiations of the
concept DESIGN RATIONALE assigned, which captures the
decision making process during the mapping activities. This
allows for reasoning about the decisions in later stages of the
product evolution.

IV. REFLECTING ON METHOD INCREMENTS

A multitude of methods has been developed since the
emergence of the method engineering research field. All too
often, however, the processes of method creation, as well as
decisions made within remain underexposed, limiting under-
standing and repeatability of the respective method engineer-
ing research [10].

While elementary method increment types have been dis-
tinguished in earlier research [47], these types do not take
into account reasoning and motivation for usage, limiting for
reflection on method creation. We have attempted to address
this issue by categorizing method increments. The following
method increment categories1 have been identified based on
creation of the SFEM:

1Obviously, this set of method increment categories is not complete and is
to certain extent specific to our method.

15

Constructing (C) — Adding, changing or removing (prop-
erties of) activities, concepts or properties in the diagram,
including activity and concept types.
Labeling (L) — Adding, changing or removing a label of
(properties of) activities, concepts, properties, associations or
roles.
Associating (A) — Adding, changing or removing (properties
of) associations between existing activities or concepts.

By explicating and motivating each increment in a method
increment log, the method construction process as a whole is
explicated. Below, an excerpt of the SFEM increment log with
motivations per increment is shown.

C We need to capture documentation to reside with
the VISUALIZATION. Instead of adding an explicit
concept, a VISUALIZATION will include the concept
DESIGN RATIONALE. This implies that a VISUAL-
IZATION does not necessarily need to be a figure, it
can just as well be textual.

C In the Peer review activity, a VISUALIZATION of the
method’s output must be included in order to review
the performance. Therefore, we merged the Peer
review activity with the main activity Visualization.
This implies that after the Visualization activity, we
must also be able to return to the Mapping main
activity.

A We can’t set the project’s goal without knowing what
the scope actually is we’re working in. Therefore,
the activity Set project scope will be implied by the
activity Define migration project.

A The concepts SOFTWARE PLATFORM and PERSONA
both appear in at least one SCENARIO, otherwise it
would not make sense to define either of the concepts
at all.

L The main activity Platforms and personas should be
renamed to Scenarios, as the aim of the main activity
is to develop SCENARIOS.

L The term for the concept OBJECT is ambiguous.
The term ENTITY is more suitable, considering the
method domain’s jargon.

L The concept OBJECT TREE should be renamed to
DATA MODEL, considering the method domain’s
jargon.

Figure 5 visualizes how different versions of template
method instantiations contribute to the creation of the tem-
plate method. Since a new version of a template method is
constructed based on input from the previous version of the
template method as well as its instantiation, template methods
particularly benefit from method increment reflection. When
a new version of a template method is to be developed,
potential method increments (as well as underlying reasoning
and motivations) are considered, compared and weighed from
both an abstract/conceptual (template) perspective and a con-
crete/practical (instantiation) perspective. During the construc-
tion of the SFEM (Figure 3), we learned that this approach
results in thorough yet rapid method development.

Fig. 5. Template method increments

V. CASE RESULTS

The Software Functionality Evolution Method (SFEM) has
been instantiated in two cases at an ERP software vendor,
having its main office in the Netherlands. The software suite
in scope exists of a Windows client application and two web
applications, which are an intranet and a portal application.
The Windows client is considered being the originating plat-
form, having the base set of functionality.

In an ongoing attempt to evolve the software suite to meet
current customer demands, functionality is being extracted
from the Windows client and implemented in the web applica-
tions. The SFEM has been instantiated to assist the mapping of
functionality of two function groups on the intranet platform.

In Figure 6, we present a snippet of the first template method
instantiation in a case. The case was scoped towards the
function group Course management and related functionality,
currently implemented in the Windows client platform. Only
the software platform INTRANET was relevant in this case,
because the existing functionality is designed for employees
within an organization. For the example in this paper we have
limited ourselves to the persona TEACHER, although other
personas have been identified and included in the complete
case. We have selected the functionality VIEW PARTICIPANTS
PER COURSE EVENT, originating from the entity COURSE
EVENT. Given the scenario TEACHER ON INTRANET and
the selected functionality, a MAPPING was assigned with a
relatively high Priority of 0.9. This is because during the group

16

session, it became obvious that during a course day, a teacher
is particularly interested in the number of participants and their
names and organizations, which helps a teacher to prepare
for the course. Therefore, a high priority is assigned to the
mapping, increasing the possibility that this functionality will
eventually be implemented in the intranet web application.

In the first case, a total of 135 sets of functionality was
initially identified. 90 sets of functionality were never assigned
a mapping, which means they are currently not relevant in the
evolution of the software suite for this software platform and
identified personas. Of the remaining 45 sets of functionality,
an average of the mapping priorities was calculated per func-
tionality, by dividing the sum of priorities by the total number
of scenarios. The average was not calculated by dividing the
sum of priorities by the number of assigned mappings, as
it would neglect the meaning of a missing mapping for a
set of functionality. The functionality, the scenarios and their
mappings are presented in a matrix, sorted in a descending
order by their average mapping priority. A part of the case’s
report is visualized in Figure 7.

The results of the case for Course management have been
compared with the actual implementation of the function
group in the intranet web application. An analysis of the
results has pointed out that even though many similarities
exist, some functionality was included through mappings in
the case, while the actual web application does not (yet) host
the mapped functionality. A discussion with the organization’s
stakeholders concluded that the mappings had been decided
with a pure focus on the added value for the scenarios, and
current technical and organizational implications have been
left out in the decision making process. This has been a con-
scious decision. The consideration of required and available
resources would have made the mapping process of the method
too complicated and less efficient, as it would require more
discussion, stakeholders and time.

The second case in which the template method was instan-
tiated was scoped towards functionality in the function group
Fixed assets management. It initiated with a total of 79 sets
of functionality, of which 56 sets were assigned a mapping
and priority. This implies that 23 sets of functionality were
excluded from the software evolution by discussing them in
the group session and deciding not to assign any mapping at
all. The second case concerned functionality which has not yet
been implemented in the intranet web application. An analysis
of the results has shown that an initial consideration of the
possibilities of implementing the function group in the intranet
web application would be of added value to the identified
personas. During the execution of the project, it became clear
that the software platform even poses opportunities for new
functionality to be developed, due to the functional context of
the software platform. However, the results of the case again
stressed not to be suitable to be considered a product roadmap,
as other important factors have not been discussed during
the mapping of functionality, such as required and available
resources, strategy, and the software ecosystem.

VI. RELATED WORK

The Actor Dependency (AD) model [48] analyzes the soft-
ware processes to capture why a software process has been im-
plemented by a software developing organization, rather than
how it was implemented, or what the process was designed
like. This creates a better understanding of the composition of
software development processes and the motivations, intents
and rationales behind them. The model creates a basis for
the research in terms of understanding software processes and
rationales that capture a decision making process.

Strategies to cope with legacy information systems can be
subdivided into three categories: redevelopment, wrapping and
migration [1]. The difference in impact on the current and new
system give a good impression of the wide range of aspects
to take into account in software evolution.

The context of legacy system reengineering can be seen
from the perspective of engineering, system, software, man-
agerial, evolutionary and maintenance [49]. Each perspective
comes with challenges to be considered, to realize an effective
approach towards reengineering. Such challenges may also
play a role during the mapping and decision making process
of the evolutionary method.

The Chicken Little Methodology [50] is considered to be
the most mature approach for the migration of a software
product [51]. However, the approach makes extensive use of
gateways, which increases the complexity of the software.
Therefore, the Butterfly Methodology is a gateway-free ap-
proach to legacy system migration which reduces the risk of
increasing complexity [51].

In Method Engineering [8], [9], situational methods are
engineered which are tuned to the situation of the project
at hand [7]. Template methods [10] are designed to be more
generic, by describing what, rather than how, the activities
and concepts are to be implemented by the instantiating
organization. The Software Functionality Evolution Method
is designed as a template method, to make it more generic
and applicable in different project situations.

VII. DISCUSSION

The research project’s goal is to design a template method
for software developing organizations. Since the role of a soft-
ware product manager does not necessarily imply having in-
depth knowledge about the product’s source code and technical
architecture, techniques that concern technical competencies
such as the analysis of source code or implemented archi-
tecture, are omitted. Thus, the software product is analyzed
from a functional perspective. However, this might not be
conclusive, and a functional approach may produce more
overhead and consume more resources compared to technical,
potentially automated approaches that were left out in the
research.

During the extraction of entities and functionality from
the software product, functionality is not clustered, nor are
relationships between functionality recorded. Should we have
decided to do so, the process of mapping functionality on
scenarios would have become too complex, due to a cascading

17

Fig. 6. Template method instantiation for Course management

Fig. 7. Report for Course management

assignment of priorities among functionality. This does not
benefit the efficiency of the template method, as the mapping
phase is not designed to consider such extensive dependencies.

The template method’s deliverable, an instantiation of the
concept REPORT, is not suitable to be considered a product
roadmap. The method does not take into account the required
and available resources for the implementation of each set
of functionality during the mapping phase. The required re-
sources are not exclusively dependent on the characteristics
of the functionality itself, as the difficulty of implementing
functionality can be different per software platform. However,
it has been a conscious decision to exclude the consideration of
resources, as it would increase the complexity of the mapping
phase, making the method less efficient. The prioritized short-

list of requirements, delivered by the method as a report, can
in turn be used as input for roadmap intelligence, as described
in Section I and visualized in Figure 1.

Also not explicitly considered in the decision-making pro-
cess of mapping functionality are product strategy aspects,
such as platform stability, reliability and pricing, and product
ecosystem considerations. However, such considerations can
be taken into account during the mapping-phase of the method,
and can be captured by means of design rationales.

The template method has been designed, instantiated and
validated at a single case company, which produces an inte-
grated ERP software product. It may be possible that validation
at another case company, producing different software prod-
ucts, possibly even adhering to another development method-

18

ology, may result in different performance. Such validation is
left open for future research.

VIII. CONCLUSION

This research proposes an answer to the research question
by developing a template method which assists a software
developing organization in the evolution of a software prod-
uct by mapping functionality between software platforms.
The method is labeled the Software Functionality Evolution
Method (SFEM). Five phases are to be executed in an instanti-
ation of the method, which are Project definition, Functionality
identification, Scenario creation, Functionality mapping and
Results reporting. To create an instantiation which is tuned
towards the project characteristics, different method fragments
are proposed which support the execution of activities in the
method.

The template method has been validated by means of
instantiations in two different cases. By analyzing the method’s
design and performance, the method is improved by designing
method increments. A categorization for method increments is
proposed, which allows for reflection on a research process by
a researcher.

The two cases in which the template method is instantiated
are performed at one single software developing organization
in the Netherlands, which produces an integrated ERP system
for the Dutch marketplace. Future work validates and improves
the template method by means of cases at other software
vendors, with different software products and different project
requirements. Thus, a more quantitative approach towards the
instantiation and validation of the template is subject to future
research.

The research project is designed for software product man-
agers, and thus technical approaches for the analysis of soft-
ware products and their architecture are omitted. Future work
explores the (semi-)automated analysis of software products,
to make the process of extracting entities and functionality
more efficient and conclusive.

In the mapping phase of the template method, opportunities
exist for automated application and cascading of priorities,
based on relationships between entities and functionality.
However, this is not explored in this research project, as it is
still unclear what effect cascading has on the outcome of an
instantiation. Such dependencies would require a thoroughly
tested algorithm which automatically cascades a mapping’s
priority based on properties of the relationship between entities
or functionality.

ACKNOWLEDGMENTS

We would like to thank all interviewees who have partici-
pated in the cases and group sessions for their knowledge and
cooperation during the research project. Their contribution has
been of great significance to the development of the template
method.

REFERENCES

[1] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information
systems: Issues and directions,” Software, IEEE, vol. 16, no. 5, pp. 103–
111, 1999.

[2] J. T. Yee and S.-C. Oh, “Focusing on RFID, Interoperability, and Sustain-
ability for Manufacturing, Logistics, and Supply Chain Management,”
in Technology Integration to Business. Springer, 2013, pp. 67–95.

[3] V. T. Rajlich and K. H. Bennett, “A staged model for the software life
cycle,” Computer, vol. 33, no. 7, pp. 66–71, 2000.

[4] C. Ebert, “The impacts of software product management,” Journal of
Systems and Software, vol. 80, no. 6, pp. 850–861, Jun. 2007.

[5] W. Bekkers, I. van de Weerd, M. Spruit, and S. Brinkkemper, “A
Framework for Process Improvement in Software Product Management,”
in Systems, Software and Services Process Improvement. Springer
Berlin Heidelberg, 2010, vol. 99, pp. 1–12.

[6] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses: The PRISMA
Statement,” Annals of Internal Medicine, vol. 151, no. 4, pp. 264–269,
2009.

[7] F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineer-
ing for Information System Project Approaches. University of Twente,
Department of Computer Science, 1994, no. September.

[8] S. Brinkkemper, “Method engineering: engineering of information sys-
tems development methods and tools,” Information and software tech-
nology, vol. 38, no. 4, pp. 275–280, 1996.

[9] I. van de Weerd and S. Brinkkemper, “Meta-Modeling for Situational
Analysis and Design Methods,” in Handbook of research on modern
systems analysis and design technologies and applications. Information
Science Reference, 2008, vol. 35, pp. 35–54.

[10] H. van der Schuur, “Process Improvement through Software Operation
Knowledge: If the SOK Fits, Wear It!” SIKS Dissertation Series, vol.
2011, no. 43, 2011.

[11] R. K. Yin, Case study research: Design and methods. Sage, 2009.
[12] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, Dec. 2009.

[13] International Software Product Management Association. (2014)
Software Product Management Body of Knowledge (SPMBOK).
[Online]. Available: http://ispma.org/spmbok/

[14] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[15] Object Management Group, “UML 2.0 superstructure specification,”
Technical Report ptc/04-10-02, Tech. Rep., 2004.

[16] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Standard 610.12, 1990.

[17] “Systems and software engineering – Software life cycle processes,”
IEEE Standard 12207, 2008.

[18] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[19] “IEEE Guide for Information Technology - System Definition - Concept
of Operations (ConOps) Document,” IEEE Standard 1362, 1998.

[20] “IEEE Standard for Conceptual Modeling Language - Syntax and
Semantics for IDEF1X97 (IDEFobject),” IEEE Standard 1320.2, 1998.

[21] A. Cooper, The inmates are running the asylum: Why hightech products
drive us crazy and how to restore the sanity. Indianapolis, IN: SAMS,
Macmillan Computer Publishing, 1999.

[22] “IEEE Standard for Adoption of ISO/IEC 26513:2009 Systems and
Software Engineering–Requirements for Testers and Reviewers of Doc-
umentation,” IEEE Standard 26513, 2010.

[23] “IEEE Standard for Information Technology–Systems Design–Software
Design Descriptions,” IEEE Standard 1016, 2009.

[24] “ISO/IEC/IEEE Systems and software engineering – Content of life-
cycle information products (documentation),” IEEE Standard 15289,
2011.

[25] G. G. Chowdhury, “Natural language processing,” Annual Review of
Information Science and Technology, vol. 37, no. 1, pp. 51–89, 2003.

[26] R. Kazman, L. O’Brien, and C. Verhoef, “Architecture Reconstruction
Guidelines, Third Edition,” Software Engineering Institute, Carnegie
Mellon University, Tech. Rep. November, 2003.

[27] R. Kazman and S. J. Carrière, “Playing Detective: Reconstructing
Software Architecture from Available Evidence,” Automated Software
Engineering, vol. 6, no. 2, pp. 107–138, 1999.

19

[28] L. O’Brien, C. Stoermer, and C. Verhoef, “Software Architecture
Reconstruction: Practice Needs and Current Approaches,” Software
Engineering Institute, Carnegie Mellon University, Tech. Rep. August,
2002.

[29] J. Martin, Managing the data base environment. Prentice Hall PTR,
1983.

[30] M. Stolze, P. Riand, M. Wallace, and T. Heath, “Agile Development
of Workflow Applications with Interpreted Task Models,” in 6th inter-
national conference on Task Models and Diagrams for User Interface
Design. Springer, 2007, pp. 2–14.

[31] C. G. Jung and A. E. Storr, The essential Jung. Princeton University
Press, 1983.

[32] M. Aoyama, “Persona-and-scenario based requirements engineering for
software embedded in digital consumer products,” in Proceedings of
the 13th IEEE International Conference on Requirements Engineering,
2005, pp. 85–94.

[33] P. T. A. Junior and L. V. L. Filgueiras, “User modeling with personas,” in
Proceedings of the 2005 Latin American conference on Human-computer
interaction. New York, New York, USA: ACM Press, 2005, pp. 277–
282.

[34] A. Cooper, R. Reimann, and D. Cronin, About Face 3: The Essentials
of Interaction Design. John Wiley & Sons, 2012.

[35] A. Gawer and M. A. Cusumano, “Platform leadership: How Intel, Mi-
crosoft, and Cisco drive industry innovation,” Innovation: Management,
Policy & Practice, vol. 5, no. 1, pp. 91–94, 2003.

[36] J. Bosch, “From Software Product Lines to Software Ecosystems,” in
Proceedings of the 13th International Software Product Line Conference,
no. Splc. Carnegie Mellon University, 2009, pp. 111–119.

[37] S. Mann, “Wearable computing: a first step toward personal imaging,”
Computer, vol. 30, no. 2, pp. 25–32, 1997.

[38] A. Gawer, Platform dynamics and strategies: from products to services.
Cheltenham: Edward Elgar Publishing Limited, 2009.

[39] P. Berander and A. Andrews, “Requirements Prioritization,” in Engineer-
ing and Managing Software Requirements. Springer Berlin Heidelberg,
2005, pp. 69–94.

[40] Z. Racheva, M. Daneva, and L. Buglione, “Supporting the Dynamic
Reprioritization of Requirements in Agile Development of Software

Products,” in Second International Workshop on Software Product
Management, Barcelona, Catalunya, 2008, pp. 49–58.

[41] T. Bebensee, I. van de Weerd, and S. Brinkkemper, “Binary Priority List
for Prioritizing Software Requirements,” in Requirements Engineering:
Foundation for Software Quality. Springer Berlin Heidelberg, 2010,
pp. 67–78.

[42] D. Leffingwell and D. Widrig, Managing software requirements: a
unified approach. Addison-Wesley Professional, 2000.

[43] K. Wiegers, “First things first: prioritizing requirements,” Software
Development, vol. 7, no. 9, pp. 48–53, 1999.

[44] I. Sommerville and P. Sawyer, Requirements engineering: a good
practice guide. John Wiley & Sons, Inc., 1997.

[45] DSDM Consortium, DSDM Atern Handbook. DSDM Con-
sortium, 2008. [Online]. Available: http://www.dsdm.org/content/
10-moscow-prioritisation

[46] A. M. Davis, “The art of requirements triage,” Computer, vol. 36, no. 3,
pp. 42–49, 2003.

[47] I. van de Weerd, S. Brinkkemper, and J. Versendaal, “Concepts for
Incremental Method Evolution: Empirical Exploration and Validation
in Requirements Management,” in Advanced Information Systems Engi-
neering SE - 33, ser. Lecture Notes in Computer Science, J. Krogstie,
A. Opdahl, and G. Sindre, Eds. Springer Berlin Heidelberg, 2007, vol.
4495, pp. 469–484.

[48] E. S. Yu and J. Mylopoulos, “Understanding ”why” in software process
modelling, analysis, and design,” in Proceedings of the 16th interna-
tional conference on Software engineering. IEEE Computer Society
Press, 1994, pp. 159–168.

[49] S. R. Tilley and D. Smith, “Perspectives on Legacy System Reengineer-
ing,” 1995.

[50] M. L. Brodie and M. Stonebraker, Migrating legacy systems: gateways,
interfaces & the incremental approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995.

[51] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and
D. O’Sullivan, “The butterfly methodology: A gateway-free approach
for migrating legacy information systems,” in Third IEEE International
Conference on Engineering of Complex Computer Systems. IEEE, 1997,
pp. 200–205.

20

