
Architectural Pattern Definition for Semantically
Rich Modular Architectures

Joeri Peters, Jan Martijn E.M. van der Werf, Jurriaan Hage
Department of Information and Computing Sciences, Utrecht University, the Netherlands

{J.G.T.Peters, J.M.E.M.vanderWerf, J.Hage}@uu.nl

Abstract—Architectural patterns represent reusable design of
software architecture at a high level of abstraction. They can be
used to structure new applications and to recover the modular
structure of existing systems. Techniques like Architecture Com-
pliance Checking (ACC) focus on testing whether the realised
artefacts adhere to the architecture. Typically, these techniques
require a complete architecture as input. In this paper, we
focus on defining architectural patterns in such a way that we
can use ACC tools to recognise architectural pattern instances.
This requires us to explicitly define architectural patterns in
terms of allowed and disallowed software dependencies. We base
ourselves on Semantically Rich Modular Architectures. Defining
architectural patterns this way allows us to reason about them.
For example, how patterns should be interpreted as incomplete
architectures and how different interpretations affect the pattern
recognition process. Recognising architectural patterns using
ACC techniques also has great potential in architecture design
and Software Architecture Reconstruction.

I. INTRODUCTION

“The software architecture of a system is the set of struc-

tures needed to reason about the system, which comprise

software elements, relations among them, and properties of

both” [1]. One can distinguish three types of structures within

software architecture (static, dynamic and allocation) [1], or

look at a categorisation based on views and viewpoints, such

as functional, development, and concurrency [2]. This paper

is restricted to static, technical architectures, the branch of

software architecture that looks at the arrangement of source

code into modules such as components and layers (i.e. the

module view). We study their connecting dependencies with-

out incorporating runtime behaviour.

Architectural patterns prevent software architects from rein-

venting the wheel in much the same way as design patterns

do for developers. They establish the relationship between a

context, a problem and a solution [1]. Examples of such pat-

terns include Model-View-Controller, Broker and N-Layered

patterns. Another concept related to architectural patterns is

architectural style [3]. We recognise the two terms are often

used interchangeably, but we prefer saying that the layering of

a system is its style, whereas the layering within, for example,

one of a system’s modules is an instance of the pattern. This

is merely a distinction in scope, allowing us to state that a

system has an MVC style with a 3-Layered pattern in the

Model-module, for example.

This paper describes our ongoing research into pattern

recognition using Architecture Compliance Checking (ACC).

We want to use ACC tools to assist the challenging process of

Software Architecture Reconstruction (SAR) by searching for

hypothesised parts of the architecture, e.g. architectural pat-

terns, thereby deriving the intended architecture. ACC works

by checking whether realised artefacts, such as source code,

adhere to the intended architecture [4]. This can be to check

the developers correctly implemented the architecture, or that

the documentation has been kept up to date. Static ACC is thus

aimed at the analysis of software dependencies between static

modules and their correspondence to architecture documenta-

tion. This is but a portion of a larger reconstruction approach,

since there are limitations to how much of the architecture can

be derived from code. A complete SAR method would have

to go beyond just the module view and be able to combine

different code bases. ACC relies on a proper and adequate

architecture description, which is typically tool dependent.

We are thus faced with the problem of defining architectural

patterns using such descriptions, which this paper addresses.

“A semantically rich modular architecture includes modules

of semantically different types, while a variety of rule types

may constrain the modules” [5]. Design and validation of such

Semantically Rich Modular Architectures (SRMAs) is possible

with the ACC tool HUSACCT, which distinguishes itself by

supporting elements commonly used in SRMAs [6]. These

elements can be said to be HUSACCT’s architectural lan-

guage. Several tools (e.g. SAVE, Lattix and Sonargraph) have

previously been compared by the creator(s) of HUSACCT [7]

and this open-source tool has been made to have extensive

and configurable SRMA support, making it interesting for

academic purposes.

HUSACCT is intended to describe a complete, as opposed

to partial, architecture. As we are interested in the potential

role of ACC to check whether an architectural pattern is

present in source code, we want to study the possibilities this

tool’s language provides to express architectural patterns in

terms of allowed and disallowed dependencies. HUSACCT

does distinguish between dependency types, such as method

calls and variable accesses, but this is not relevant to our

pattern definitions at this time. We thus focus on the following

research question: “how can architectural patterns be expressed

in HUSACCT’s terms and what are the consequences of

alternative pattern definitions?”

The remainder of this paper is structured as follows: Sec-

tion 2 explains the relevant portions of HUSACCT’s SRMA

support, in Section 3 the consequences of pattern definitions

for the allowed dependencies are investigated, Section 4 shows

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.50

256

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.50

256

TABLE I
THE 7 RELATION RULE TYPES, SPLIT INTO TWO SUB-CATEGORIES.

Is not allowed to use
Is not allowed to back-call (layers)

Is not allowed to skip-call (layers)

Is allowed to use
Is only allowed to use

Is the only module allowed to use

Must use

how these choices become critical when combining patterns,

Section 5 lists some of the relevant literature and Section 6

portrays the possible future industrial impact of our work.

II. SRMA CONCEPTS

SRMAs combine various types of modules with rule types

to express architectural elements and their constraints. This

enhances expressiveness and supports architecture reasoning

in terms comparable to regular language [5]. Using the module

and rule types understood by HUSACCT, we want to express

architectural patterns.

HUSACCT supports the following types of software mod-

ules: subsystems, layers, components, interfaces and external

systems. Subsystems are modules with clear responsibilities.

A layer has the additional property of a hierarchical level,

which enforces strict layering as HUSACCT automatically

adds rules banning skip-calls and back-calls to the relevant

levels. Components are modules whose contents are hidden

behind and accessed through an interface module. Finally,

external systems represent libraries, modules that are not

actually part of the system under consideration [5] [6].

The rule types can be placed in one of two categories:

property rule types and relation rule types [5]. The former

consists of conventions such as naming and inheritance. Only

the façade convention is used in this paper. This convention

states that interface Module A always had to act as the

interface for component Module B.

The second category, relation rule types, consists of a further

subdivision into: “Is not allowed to use” and “Is allowed

to use” rules, which are themselves two basic rule types

that can be used to express rules like “Module A is not

allowed to use Module B”. Two rule types exist within the

first subdivision (Back-call bans and Skip-call bans), which

exist specifically for layer-type modules. Within the second

subdivision, there are three: “Is only allowed to use”, “Is the

only module allowed to use” and “Must use”. That makes

a total of seven relation rule types, each tying two modules

together and putting limitations on the dependencies allowed

in the modular architecture. These rules are listed in Table I.

III. ARCHITECTURAL PATTERN DEFINITION

Architectural patterns, such as the N-Layered pattern (equiv-

alent terms include Layered Architectures and N-Layers pat-

tern), are not as precisely defined as the Gang-of-Four design

patterns [8]. One can see them as two extremes on the same

spectrum. The main characteristic of design patterns is that

they are designed for solving recurrent problems on the level

of the detailed design, e.g. source code, whereas architectural

patterns exist on a system level. Consequently, design patterns

appear more frequently within the same system, deal with far

more specific concepts and are meant not to have any rule

violations at all. Architectural patterns tend to focus more on

which dependencies are not allowed. Design patterns specify

the dependencies that should be implemented. As such, design

patterns are more fit to be used as detailed design techniques

similar to the tactics described by Bass et al. [1].

In this paper, we explore the possibility to express architec-

tural patterns in terms of allowed and disallowed dependen-

cies. Although at first sight this seems an easy exercise, in re-

ality defining patterns this way leaves room for interpretation.

Consider the 3-Layered pattern. This pattern is commonly used

as a primary separation of concerns within a software system,

e.g. user interface, business logic and data access layers. Each

layer is only supposed to make use of its own internal modules

or those of the layer directly below.

There are three layers and the following rules are how one

would ordinarily express the pattern in terms of skip- and

back-calls:

Rule set 1, Skip-calls and back-calls:
1) Layer i is not allowed to skip-call to Layer j > i+ 1.
2) Layer i is not allowed to back-call to Layer j < i.
The fact that HUSACCT’s layer-type modules possess hi-

erarchical levels that constrain dependencies already suggests

one way of defining the N-Layered pattern. However, we want

to be able to use other module types as well, e.g. in order to

use component-type modules as layers, which means we have

to translate this set to one consisting of rules that do not rely

on hierarchical levels.

A translation to “Is not allowed to use” rules would result

in the following set of architectural rules for this pattern:

Rule set 2, “Is not allowed to use”:
1) Layer 2 is not allowed to use Layer 1.
2) Layer 3 is not allowed to use Layer 2.
3) Layer 3 is not allowed to use Layer 1.
4) Layer 1 is not allowed to use Layer 3.
The same can be achieved by replacing rules 1 and 4 with

“Is the only module allowed to use” rules from one layer

to the next, or by two “Is only allowed to use” rules whilst

removing rule 4. Both would appear to signify the exact same

pattern. One might even prefer a hybrid form, such as the

one displayed in rule set 3:

Rule set 3, Hybrid example:
1) Layer 1 is the only module allowed to use Layer 2.
2) Layer 2 is only allowed to use Layer 3.
3) Layer 3 is not allowed to use Layer 1.
4) Layer 1 is not allowed to use Layer 3.

Let us compare the different rule sets to see what happens

when such a set is used as a pattern definition within a system’s

257257

X X

X

X

!

!

Fig. 1. The 3-Layered pattern and the Remainder, defined with “Is not allowed
to use” rules (rule set 2) and showing allowed dependencies as dashed lines.

architecture. Imagine the rest of the architectural elements of

this system as a single module, the Remainder, all architectural

elements that are not part of the architectural pattern under

consideration and not sub-modules of any of the pattern’s

modules. As such, the Remainder is always with respect to

some pattern. There may not be a Remainder if layering is the

overall style of the system, but there has to be if it is a pattern

used within system modules. More complex architectures, such

as when there is a freely accessible additional module, may be

found in a pattern discovery approach that takes a Remainder

into account.

According to rule set 2, nothings prevents the Remainder

from calling on any of the layers within the 3-Layered pattern

and any of these layers can call upon the Remainder. This

is depicted in Figure 1. Rule set 3 forbids any dependencies

between the Remainder and Layer 2, as shown in Figure 2.

This creates a scenario where the Remainder is free to call

upon Layers 1 and 3, but not 2, while Layer 2 is the only layer

that cannot call upon the Remainder. This version essentially

isolates Layer 2 form the Remainder, while leaving a lot of

freedom to the other two layers. In both cases, we have added

“Must use” rules between the layers in order to enforce the

correct usage of the pattern.

To graphically depict the patterns, we adopt a UML-like

syntax. Expanded packages represent architectural elements,

i.e. pattern modules and the Remainder. Collapsed packages

indicate sub-modules. Legal dependencies are represented by

dashed lines and directed associations figure as the architec-

tural rules. Additional symbols are used to indicate the rule

type being employed, as depicted in Table II. Conflicting rules

result in exceptions. HUSACCT allows for rule exceptions by

specifying the module that is exempt from the given rule [6].

At first sight, these rule sets seem to be equivalent. However,

as an architectural pattern is an incomplete architecture, subtle

differences emerge. Consider again the 3-Layered pattern.

More interpretations can be formulated using additional

rule sets, combining the various rule types in different ways.

We can thus identify the following interpretations of the N-

Layered pattern:

TABLE II
THIS LEGEND PRESENTS THE DIFFERENT RULE TYPES FOR THE

PROVISIONAL DIAGRAM NOTATION USED HERE.

“Is not allowed to use” X

“Is only allowed to use” O

“Is the only module allowed to use” |

“Is allowed to use”

“Must use” !

_

O

X

!

!

X

Fig. 2. The 3-Layered pattern and the Remainder, defined with three different
rule types (rule set 3).

• N-Layered pattern (Complete freedom): there are no
restrictions with regard to the Remainder, hence the name.
This corresponds to rule sets 1 and 2.

• N-Layered pattern (Free Remainder): the Remainder
cannot be called by any layer, but can itself depend on
any of them. The rule set requires two “Is only allowed
to use” rules from each layer to the next and two “Is not
allowed to use” rules for the back-call bans.

• N-Layered pattern (Restricted Remainder): the Remain-
der cannot call on any layer. This is with “Is the only
module allowed to use” rules from each layer to the next
and an “Is not allowed to use” rule from Layer 3 to 1.

• N-Layered pattern (Isolated internal layers): intermedi-
ary layers are never called by and can themselves not
call on the Remainder. This corresponds to rule set 3.

More varieties are conceivable, especially when different

module-types are taken into account. This goes to show that

even a pattern as simple as the N-Layered pattern allows

for various different versions when the Remainder is taken

into account. It shows that for pattern recognition, we need

explicit pattern definitions. These same issues come up when

one considers other architectural patterns and, for the sake of

illustration, we will briefly go into one of them: the Model-

View-Controller pattern.

258258

!

!

!

O

_
_

O

_

Fig. 3. The Model Interface interpretation, without demanding that Model
talk to View.

Model-View-Controller

The Model-View-Controller (hereafter MVC) pattern is

a term that applies to several related design patterns, but

MVC also occurs on a system (architectural) level. It can

be used to separate presentation logic from the underlying

model logic by restricting communication between the two.

A Controller acts as a mediator with the essential restriction

that Model cannot use Controller [1]. The MVC pattern

is often confused with the MVP (Model-View-Presenter)

pattern [9] [10] and several others, but we are only interested

in classic MVC for the sake of illustration. A common

interpretation of the pattern states that View can perform a

state query on Model and that Model can update View (e.g.

Bass et al. [1]). We define the classic MVC pattern as follows:

Rule set 4, interpretation of classic MVC:
1) Controller must use Model.
2) Controller must use View.
3) View must use Model.
4) Model is not allowed to use Controller.
5) If Model is not allowed to use View,

violations should only be change updates.
6) If View is not allowed to use Controller,

violations should all be triggered by user actions.

It is clear that different interpretations of MVC would lead

to several SRMA pattern definitions for this pattern as well. In

fact, such ambiguity should be expected for all architectural

patterns and this is precisely what we have to address in our

research. Figure 3 graphically depicts one possible transla-

tion into HUSACCT’s rules, namely the interpretation where

Model forms the interface with the Remainder.

With these examples, we hope to illustrate the type of

questions that are raised when defining architectural patterns

in HUSACCT’s SRMA terms. Not only are there various

interpretations of patterns such as MVC, implementations of

these patterns have consequences for the allowed, required

and forbidden dependencies within a modular architecture.

The nuances in interpretations can mostly be traced back

to the dependencies with the Remainder. Patterns have an

open world, which needs to be made explicit; whereas a

!

X

!
!

Communication

Business logic

Data access

!

! O

O

X
X

Fig. 4. A combination of Complete Freedom MVC (style) and Free Remain-
der 3-Layered (pattern), which fails to isolate the lower Model layers.

complete architecture is closed and thus all rules are explicit.

Assumptions and consequences will thereby become apparent.

In the next section, we will discuss the effects of different

pattern definitions on combinations of patterns.

IV. PATTERN-BASED ARCHITECTURES

“Experienced architects typically think of creating an archi-

tecture as a process of selecting, tailoring, and combining pat-

terns” [1]. An open-source example of this is SweetHome3D,

where an MVC pattern is distributed over several layers [11].

We thus want to be able to recognise multiple patterns in the

same architecture.

Although one would not expect to see a number of architec-

tural patterns in the same order of magnitude as the number

of design patterns within a given architecture, systems may

include more than one architectural pattern. The exact inter-

pretations of these patterns may result in subtle constraints or

even contradictions. This makes explicit definition of patterns

even more important, especially during a process like ACC or

pattern recognition.

To illustrate this point, let us take the example of an

architecture with an MVC pattern. Figure 4 shows a different

interpretation of MVC from Figure 3, namely the “Complete

Freedom” variety. This interpretation uses only the “Is not

allowed to use” rule between Model and Controller besides

its “Must use” rules. While MVC is the overall style, there is

a 3-Layered pattern within the Model module. This is quite

reasonable and plausible, as Model might contain business

logic and data access functionality separated from the rest (let

us call Layer 1 “communication”) through layering. This is

also part of the reason why we chose to discuss the MVC

pattern earlier. It begs the question, however, of who can

access whom in this case.

Based on the architectural rules of these two patterns alone,

are the lower layers of Model allowed to have dependencies to

and from View and Controller? And, if there happens to be any,

259259

what about the Remainder outside the MVC pattern? From

the perspective of this 3-Layered pattern, View and Controller

are part of the Remainder and therefore the particular pattern

definition has a subtle effect. If we were to apply the “Isolated

Internal Layers” version of the N-Layered pattern (Figure 2),

the data access layer would be allowed to have dependen-

cies to and from View and Module. The “Free Remainder”

interpretation used in Figure 4 would allow dependencies of

these outside modules with the data access (in both directions)

and business logic (one way) layers, which may also not be

desirable.

Probably, the architect wanted to isolate the lower layers

from the other MVC modules. Thus, the “Restricted Remain-

der” interpretation (two “Is the only module allowed to use”

rules and one “Is not allowed to use”) ought to be combined

with rules that prohibit the data access layer from accessing

anything but those modules that it should require. This may

be solved with some of the relational rules, or by turning

Model into a component type with either the communication

layer or an additional element within Model functioning as the

interface for this component, thereby calling upon the façade

convention that was briefly mentioned in Section 2.

If these combinations raise such questions, then pattern

recognition within pattern-based architectures needs to take

into account that identifying overall style first could result

in a different final conclusion from an approach to pattern

recognition starting with the smaller pattern. We are currently

investigating this problem with our pattern discovery approach.

V. RELATED LITERATURE

Several languages have been used to define architectural

patterns for various purposes by other researchers. Abowd,

Allen and Garlan rely on the Z language, a mathematical

notation based on predicate logic, to introduce styles with

precise syntactic and semantic descriptions of both static and

dynamic characteristics [12]. This is more formal than what

we have needed thus far.

Another common language is the Acme Architecture De-

scription Language (ADL). It is used in AcmeStudio, for

example, during the design phase of systems and allows for

new styles to be defined by the user [13]. Although we too

are interested in user-defined patterns, we hope to avoid the

need for predicate logic on the part of the user. Research

involving Acme has produced several publications, such as

one on the translation of Acme into Alloy and subsequent

property analysis in the Alloy Analyzer [14], as well as an

ontology of styles [15].

Not all researchers base themselves on predicate logic.

Sartipi presents an extensive approach to SAR based on

patterns and data mining that makes use of both clustering and

editing-cost-based graph matching techniques [16]. Although

this has a strong mathematical background and promising

results, it requires substantial user input, but this may well

be unavoidable for SAR. Runtime analysis is also used to

find patterns, such as by the DiscoTect system, which employs

specifically tailored state machines [17].

For a systematic literature review on architecture reconstruc-

tion, we refer the reader to the 2009 publication by Ducasse

and Pollet [18], in which they mention architectural patterns

and styles several times in their attempts to build an ontology

of various methods.

There exist several pattern discovery approaches for the

purposes of finding design patterns. These do not necessarily

apply to patterns at the system level, but their ideas are useful

to us nonetheless. Techniques used here rely, for example, on

class metrics [19] and heuristics such as inheritance relation-

ships [20]. A systematic literature review on design pattern

mining was published in the same year as the aforementioned

SLR [21].

VI. INDUSTRIAL IMPACT

Our research is still in an early stage, but we believe that

it is promising. Obviously, stored pattern definitions within

an ACC tool make it easier for users to specify the intended

architecture through its (graphical) interface. Similarly, a set of

predefined patterns aids the design process. Not only in terms

of convenience, but also to aid the discussion about pattern

interpretation that is commonly required during architecture

design.

More interestingly, the actual reason we are concerned with

this topic is that both ACC and SAR would benefit from a

pattern discovery process using ACC tools. Some 80% of

all costs in software development are related to maintenance

activities [1] and architecture documentation can improve

maintainability. ACC and SAR can be seen as two sides of

the same coin. In both cases, hypothesised portions of the

architecture (patterns or otherwise) have to be identified. If

this hypothesis is derived from documentation, one is talking

about ACC. Part of our research is focussed on using code

and dependencies to derive the module view, albeit but a tool

in a larger tool box. Dynamic analysis as well as additional

views should all come into play in a complete reconstruction

method. Considerations of specifying patterns in tool-specific,

preferably semantically rich, terms, are necessary. The ability

to find a hypothesised piece of architecture would greatly

speed up the reconstruction process. Studying dependencies

that break pattern rules is one thing, but the choice which

pattern instances to look for requires algorithm design. This

is the focus of our ongoing research.

We envision future software tools based on ACC func-

tionality that would allow users to request a search for any

partial architecture, whether it be a common pattern or a user-

defined piece of architecture. Using dependencies, but perhaps

also semantic constraints and clustering techniques, such an

approach can help anyone trying to piece together an existing

architecture, which is a difficult task. Improvement in the

speed at which this can be performed makes it much easier to

model existing systems or support the development process,

although checking dependencies becomes itself a slow process

with large systems. HUSACCT is not a widely adopted tool

and is limited to Java and C# code, but it is useful for academic

purposes. In the future, we want to be able to incorporate other

260260

languages and combinations within the same system. We are

currently working on pattern discovery algorithms and their

evaluation by means of case studies.

During these case studies, we also intend to look into

adoption issues. ACC/SAR tools are always constrained in

terms of views and artefacts, so any approach will have its

limitations. Integration with other techniques and tools is

therefore essential if one wants to provide organisations with

an attractive solution. Accordingly, we believe even a mature

version of our approach should not stand on its own, but should

come with a range of complementary approaches.

VII. CONCLUSIONS

With this paper, we show how HUSACCT’s architectural

elements allow one to think about architectural pattern defini-

tions in some precision. This raises questions such as what

we mean by a particular pattern or what layering implies

with regard to elements that are not part of any layer. These

questions and the choices of definitions that follow from them

may be useful for architects to describe exactly what they

mean by their applied patterns, but it can also be fruitful

for purposes other than software design. Our own current

and future research is focussed on the usage of these SRMA

pattern definitions in ACC and SAR, where we want to detect

instances of architectural patterns within existing architectures.

The pattern definitions we choose and the order in which we

detect such patterns can have profound effects on the allowed

dependencies. It is therefore imperative that we make all

rules, assumptions and consequences surrounding architectural

patterns completely explicit.

Acknowledgement

We thank our colleagues at Utrecht University, with special

thanks to Leo Pruijt of the HU University of Applied Sciences

for his many contributions and insights during our research.

We also thank the reviewers for their constructive criticism.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed., P. Gordon, Ed. Boston, Massachusetts, USA: Addison-Wesley
Professional, 2012.

[2] N. Rozanski and E. Woods, Software Systems Architecture:
Working with stakeholders using viewpoints and perspectives.,
2nd ed. Addison-Wesley, 2011. [Online]. Available: http:
//www.viewpoints-and-perspectives.info/

[3] R. N. Taylor, N. Medvidović, and E. M. Dashofy,
Software Architecture: Foundations, Theory, and Practice. Wiley,
2009. [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-EHEP000180.html

[4] J. Knodel and D. Popescu, “A Comparison of Static Architecture
Compliance Checking Approaches,” in 2007 Working IEEE/IFIP
Conference on Software Architecture (WICSA’07). IEEE, jan 2007,
pp. 12–12. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4077029

[5] L. Pruijt and S. Brinkkemper, “A metamodel for the support
of semantically rich modular architectures in the context of
static architecture compliance checking,” in Proceedings of the
First International Conference on Dependable and Secure Cloud
Computing Architecture - DASCCA ’14. New York, New York,
USA: ACM Press, 2014, pp. 1–8. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2578128.2578233

[6] L. Pruijt, C. Köppe, J. M. E. Van der Werf, and S. Brinkkemper,
“HUSACCT: Architecture Compliance Checking with Rich Sets of
Module and Rule Types,” in Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering - ASE
’14. Vasteras, Sweden: ACM, 2014, pp. 851–854. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2642937.2648624

[7] L. Pruijt, C. Köppe, and S. Brinkkemper, “On the
accuracy of Architecture Compliance Checking Support,” in
IEEE International Conference on Program Comprehension,
San Francisco, CA, USA, 2013, pp. 172–181. [Online].
Available: http://ieeexplore.ieee.org.proxy.library.uu.nl/xpl/freeabs all.
jsp?arnumber=6613845&abstractAccess=no&userType=inst

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software, 1st ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1994. [Online].
Available: http://dl.acm.org/citation.cfm?id=186897

[9] M. R. J. Qureshi and F. Sabir, “A Comparison of Model View
Controller and Model View Presenter,” CoRR, vol. abs/1408.5, 2014.
[Online]. Available: http://arxiv.org/abs/1408.5786

[10] M. Potel, “MVP : Model-View-Presenter The Taligent Programming
Model for C++ and Java,” Taligent, Inc., Tech. Rep., 1996.
[Online]. Available: metrology.googlecode.com/svn-history/r350/trunk/
doc/ebooks/mvp.pdf

[11] E. Puybaret, “SweetHome3D,” 2015. [Online]. Available: http:
//www.sweethome3d.com/

[12] G. D. Abowd, R. Allen, and D. Garlan, “Using Style to Understand
Descriptions of Software Architecture,” in Proceedings of the 1st
ACM SIGSOFT Symposium on Foundations of Software Engineering.
Los Angeles, CA, USA: ACM, 1993, pp. 9–20. [Online]. Available:
http://dl.acm.org.proxy.library.uu.nl/citation.cfm?id=167055

[13] B. Schmerl and D. Garlan, “AcmeStudio: supporting style-centered
architecture development,” in 26th International Conference on
Software Engineering. IEEE, 2004, pp. 704–705. [Online].
Available: http://ieeexplore.ieee.org.proxy.library.uu.nl/xpl/freeabs all.
jsp?arnumber=1317497&abstractAccess=no&userType=inst

[14] J. S. Kim and D. Garlan, “Analyzing architectural styles,” Journal
of Systems and Software, vol. 83, no. 7, pp. 1216–1235, jul
2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0164121210000336

[15] C. Pahl, S. Giesecke, and W. Hasselbring, “Ontology-based modelling
of architectural styles,” Information and Software Technology, vol. 51,
no. 12, pp. 1739–1749, 2009. [Online]. Available: http://dx.doi.org/10.
1016/j.infsof.2009.06.001

[16] K. Sartipi, “Software architecture recovery based on pattern
matching,” in International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings. IEEE, 2003, pp. 293–296. [Online].
Available: http://ieeexplore.ieee.org.proxy.library.uu.nl/xpl/freeabs all.
jsp?arnumber=1235434&abstractAccess=no&userType=inst

[17] H. Y. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman,
“DiscoTect: a system for discovering architectures from running
systems,” in Proceedings. 26th International Conference on Software
Engineering. IEEE Computer Society, 2004, pp. 470–479. [Online].
Available: http://dl.acm.org.proxy.library.uu.nl/citation.cfm?id=999450

[18] S. Ducasse and D. Pollet, “Software architecture reconstruction:
A process-oriented taxonomy,” IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 573–591, 2009. [Online]. Available:
http://www.computer.org/csdl/trans/ts/2009/04/tts2009040573-abs.html

[19] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern
recovery in object-oriented software,” in Proceedings. 6th
International Workshop on Program Comprehension. IWPC’98
(Cat. No.98TB100242). Ischia, Italy: IEEE, 1998, pp. 153–160.
[Online]. Available: http://ieeexplore.ieee.org.proxy.library.uu.nl/xpl/
freeabs all.jsp?arnumber=693342&abstractAccess=no&userType=inst

[20] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE Transactions
on Software Engineering, vol. 32, no. 11, pp. 896–909, 2006.
[Online]. Available: http://ieeexplore.ieee.org.proxy.library.uu.nl/xpl/
freeabs all.jsp?arnumber=4015512&abstractAccess=no&userType=inst

[21] J. Dong, Y. Zhao, and T. Peng, “a Review of Design Pattern
Mining Techniques,” International Journal of Software Engineering
and Knowledge Engineering, vol. 19, no. 06, pp. 823–855, 2009.
[Online]. Available: http://www.worldscientific.com.proxy.library.uu.nl/
doi/abs/10.1142/S021819400900443X

261261

