
HUSACCT: Architecture Compliance Checking with

Rich Sets of Module and Rule Types
Leo Pruijt

HU University of Applied Sciences
Utrecht, The Netherlands

leo.pruijt@hu.nl

Christian Köppe
HAN University of Applied Sciences,

Arnhem, The Netherlands

christian.koppe@han.nl

Jan Martijn van der Werf
Sjaak Brinkkemper

University Utrecht
Utrecht, The Netherlands

j.m.e.m.vanderWerf@uu.nl
s.brinkkemper@uu.nl

ABSTRACT

Architecture Compliance Checking (ACC) is an approach to

verify the conformance of implemented program code to high-

level models of architectural design. Static ACC focuses on the

module views of architecture and especially on rules constraining

the modular elements. This paper presents HUSACCT, a static

ACC tool that adds extensive support for semantically rich

modular architectures (SRMAs) to the current practice of static

ACC tools. An SRMA contains modules of semantically different

types, like layers and components, which are constrained by rules

of different types. HUSACCT provides support for five commonly

used types of modules and eleven types of rules. We describe and

illustrate how basic and extensive support of these types is

provided and how the support can be configured. In addition, we

discuss the internal architecture of the tool.

Categories and Subject Descriptors

D.2 2 [Software Engineering]: Design Tools and Techniques

General Terms

Design, Verification.

Keywords

Software Architecture; Architecture Compliance; Static Analysis

1. INTRODUCTION
Architecture compliance, is “a measure to which degree the

implemented architecture in the source code conforms to the

planned software architecture” [2]. Architecture Compliance

Checking (ACC) is an approach to bridge the gap between the

high-level models of architectural design and the implemented

program code. Static ACC does not cover the full width of

software architecture, but only the static structure of the software

(intended and implemented); in other words, the module views of

architecture [1], or modular architecture. An intended modular

architecture should describe the modular elements, their form

(properties and relationships) and rationale, where properties and

relationships express architectural rules that constrain a modules’

implementation [3]. Modular elements, properties and

relationships, are in ACC’s center of attention.

Although Shaw and Clements include ACC in 2006 in their

list of promising areas [6], the adoption of ACC-tools is still

limited [7]. With our research, we intend to contribute to the

advancement of current methods and tools. We have focused on

ACC support of semantically rich modular architectures

(SRMAs). We use the term SRMA for an expressive modular

architecture description, composed of semantically different types

of modules (e.g., layers, subsystems, components), which are

constrained by different types of rules, such as basic dependency

constraints, constraints related to layers, naming constraints. In

practice and literature, many architectures can be labeled as

SRMA, since they contain modules with different semantics.

In the last four years, we have iteratively identified

requirements regarding SRMA support, studied existing ACC

tools, designed a metamodel, developed and tested HUSACCT,

and we applied this tool during ACC’s on professional systems. In

a first publication [4], we presented requirements to SRMA

support, and we compared eight commercial and academic ACC-

tools on basis of the requirements. We concluded that only limited

support was available for SRMAs. Furthermore, that solutions

were needed to bridge the gap between modular architectures in

software architecture documents on one side, and module and rule

models in ACC-tools on the other side.

In a second publication [5], we presented the SRMACC

metamodel, whereof the central part regarding SRMA-support is

included in Figure 1. It includes the concepts, their attributes and

associations, relevant to this paper. As shown in the figure, an

SRMA contains Modules of different ModuleTypes, where

AppliedRules, each of a certain RuleType, may constrain the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ASE’14, September 15–19, 2014, Vasteras, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to

ACM. ACM 978-1-4503-3013-8/14/09…$15.00.

http://dx.doi.org/10.1145/2642937.2648624

Figure 1. Part of SRMACC metamodel

851

Modules. For a detailed discussion of the complete metamodel,

we refer to [5].

This paper describes and illustrates how HUSACCT provides

extensive and configurable SRMA support. The remainder of this

paper is structured as follows. Section 2 describes and illustrates

the functionality of HUSACCT with the focus on SRMA support.

As running example, we use the internal architecture of the tool

itself, as it is a suitable example of an SRMA, and it helps to

explain how we addressed the most important design challenges.

Section 3 describes related work, and Section 4 concludes the

paper with the status and outlook of our tool.

2. HUSACCT
HUSACCT (HU Software Architecture Compliance Checking

Tool) is a tool that provides support to analyze implemented

architectures, define intended architectures, and execute

conformance checks. Browsers, diagrams and reports are available

to study the decomposition style, uses style, generalization style

and layered style [1] of intended architectures and implemented

architectures. HUSACCT is free-to-use and open source. It has

been developed in Java and analyzes Java and C# source code.

The executable and source code are downloadable at

http://husacct.github.io/HUSACCT/. An introduction video and

documentation are accessible at the same site.

In HUSACCT, an ACC starts with the definition of the

modules and rules in the intended architecture. Next, the intended

modules are mapped to the implemented software units. Finally,

the conformance of the implemented architecture to the intended

architecture can be validated. The following subsections follow

these steps and explain how HUSACCT provides basic, extensive,

and configurable SRMA support. Thereafter, we describe how we

addressed some design challenges in the tool’s architecture.

2.1 Rich Sets of Module and Rule Types
Basic SRMA support includes the provision of rich sets of module

and rule types and the functionality to check rules of these types.

In our first SRMA-publication [4], we identified common module

and rule types and discussed their grounding in literature. During

the development of HUSACCT, we aimed at support of these

common types. Currently HUSACCT provides support for five

common ModuleTypes and eleven common RuleTypes.

The module and rule types are used in view “Define Intended

Architecture”, shown in Figure 2. This view supports the creation

and maintenance of the intended modular architecture. The panel

“Module Hierarchy” shows the ModuleTypes currently supported:

Component (e.g., Module Analyse), Interface (e.g.,

Interface<Analyse>), Layer (e.g., Presentation), Subsystem (e.g.,

Common), and External system (e.g., ExternalSystems).

As case, the main part of the architecture of HUSACCT itself

is presented. At top-level five components are visible, which all

have a layered design internally. As example, three layers are

shown within component Analyse. This component is responsible

for the analysis of the implemented architecture. The domain layer

is responsible for the analyzed data and is designed as a

component, with an interface to hide its internals.

The panel “Software Units Assigned” shows that a package

and a class are assigned to module Analyse. Inherently, all

software units assigned to its submodules are assigned as well.

How implemented software units must be assigned to intended

modules differs from system to system in practice. Consequently,

manual work is required. To enhance the efficiency and accuracy

of this work, analyzed software units are made selectable. Once

the software units are assigned, defined architecture diagrams can

be created, like the ones in Figure 4 and 5, in which defined

modules and dependencies (the black, dashed lines) are included.

The panel “Rules” shows that four AppliedRules of three

different RuleTypes are constraining module Analyse. A new rule,

together with its exceptions, can be specified in a separate panel

that pops up when the Add-button is activated. An exception rule

is part of a main rule, as visible in the metamodel. That way it is

easy to maintain an overview. For example, the first rule of

component Analyse is of type “Façade convention”, which bans

usage of the component, other than via its interface. Except for a

module in component General GUI & Control, that acts as broker.

2.2 Extensive Semantic Support
Extensive semantic support of the module types and rule types

prevents inconsistencies in the defined architecture, and it saves

work and time. For example, in case of HUSACCT’s intended

architecture, most rules and all the interfaces are added

automatically. HUSACCT provides extensive SRMA support in

the following ways.

Figure 2. Define intended Architecture, with as case the software architecture of HUSACCT itself

852

http://husacct.github.io/HUSACCT/

First, when a rule is created, only rule types are selectable

which are allowed for the type of the constrained module. For

example, in case of module type Layer, all rule types are allowed,

except a rule type specific for Components, and rule type “Is

allowed to use”, which is reserved for exceptions. The list of

allowed rule types for module type Layer is shown in Figure 3.

Second, when an exception rule is created, only rule types

are selectable which suit to the type of the main rule. For instance,

an exception to a rule of type “Façade convention” may only be of

type “Is allowed to use”.

Third, when a module is created of type Component, a sub-

module of type Interface is created automatically; in line with our

definition of component.

Fourth, when a module is created, zero, one or more applied

rules will be created, based on the associated default rule types.

For example, in case of module type Component, an

accompanying default rule of type “Facade convention” is

generated automatically.

2.3 Configurable Support
ACCs with other tools taught us that non-configurable tool

support may result, in certain situations, in invalid violation

messages. Reason why we made all rules accessible and

incorporated the following configuration options: 1) generated

default rules may be disabled (just as user defined rules); 2)

exceptions to generated default rules may be specified (just as

exceptions to user defined rules); 3) tool-users may configure the

default rule types per module type. Figure 3 serves as an example

for the third option. It shows that two rule types are assigned as

default for module type “Layer”. These two rule types together

enforce a strict layered model. However, a tool-user is able to

configure that in his software architecture a relaxed layered model

is standard. Consequently, only an “Is not allowed to back call”

rule will be generated when a module of type Layer is added.

2.4 Conformance Checking
Within HUSACCT, the component Validate is responsible for

conformance checking. The results of a conformance check are

presented in a GUI-browser, in reports, and in diagrams.

Figure 4 and 5 show Intended architecture diagrams with the

results of a conformance check on the rules of the intended

architecture in Figure 2. Violations are shown as red, dotted lines,

where the number indicates the number of violations between the

two related modules. Details about these violations (like rule type,

involved classes, or dependency type) are shown when a line is

selected. For example, of the 194 dependencies in Figure 4 from

Define to General GUI & Control (the black, dashed line), 26 are

violating (the red, dotted line). In this case, all are violating a rule

of type “Façade convention”. It concerns dependencies to classes

within component Analyse, which pass the interface.

Figure 5 shows the violations between the layers within the

component Analyse. Five back call violations are visible from

layer Task to Presentation. The other 17 violations, from Task to

Domain, are violations against a “Façade convention” rule. These

violations from Task to Domain are shown in more depth in

Figure 6, an Implemented architecture diagram (zoomed-in on

these two layers; some classes and packages are hidden). It shows

that two implemented classes make use of the service

implementation class and pass the interface class of the

FamixDomainComponent. Even worse are the violating

dependencies from package analyser directly to package famix.

2.5 Design Challenges
The development of HUSACCT started after a phase of

requirement analysis, in which two organizations were involved;

the Dutch Tax Administration and InfoSupport. Based on the

requirements and the team structure, we had to address design

challenges, like: 1) the sets of module and rule types had to be

extendible; 2) the tool should work in GUI mode, but also in

batch (e.g., daily build process); 3) six development teams had to

work concurrently (students in computer science contributed to

the development during the first two releases); 4) the set of

supported OO programming languages had to be extendible.

To address the first challenge, the SRMACC metamodel was

developed, and during the implementation of the concepts, hard-

wired dependencies to individual types were prevented as much as

possible; for example, by usage of the strategy pattern.

To address the second and third challenges, HUSACCT’s

software is divided into five components, where each component

covers a knowledge area. The components hide their internals,

offer services to other components, and exchange data only via

data transfer objects. That way, services may be activated via a

Figure 3. HUSACCT: Configuration of default rule types

Figure 5. Intended architecture: Analyse component

Figure 4. Intended architecture: Top-level components

853

GUI or in batch (challenge 2), and each component can be

assigned to a separate development team (challenge 3).

To address the fourth challenge, two design decisions were

taken. First, ANTLR (www.antlr.org) was selected to read and

process the source code, because grammars are available for many

programming languages. Second, the FAMIX model [8] was

selected to store analyzed code data internally, in a language

independent format. Since, after the analysis, all services acquire

their data from the FAMIX model, language dependencies are

minimized.

3. RELATED WORK
In a previous study [4], we reported on the results of an SRMA-

test on eight academic and commercial ACC-tools. We concluded

that the tested tools were providing useful support for dependency

checking, but only limited support for SRMAs.

Five of the eight tested tools in our previous study were

providing only one type of module. Three other tools1 were

providing more types of modules, but only with limited support of

their semantics. One tool, SAVE, supported the graphical

definition of four module types, but provided no support of their

semantics. The two other tools provided semantic support for one

type of module: Sonargraph Architect for Interface; and

Structure101 for Layer. Compared to these tools, HUSACCT adds

semantic support for all its types of modules in a consistent way,

which allows extension of the set of module types. Furthermore, it

adds configuration options to tune the semantic support.

All eight tested tools in our previous study restricted rule

support to dependency rules only, and to simple rule types.

Compared to these tools, HUSACCT adds support for property

rules (e.g., “Naming convention”, “Inheritance convention”),

complex dependency rules (e.g., “Is only allowed to use”, “Is the

only module allowed to use), and exceptions (exceptions are

presented as parts of a main rule, not as independent rules).

4. STATUS AND OUTLOOK
HUSACCT provides support to analyze implemented

architectures, define intended architectures, and execute

conformance checks. HUSACCT distinguishes itself from other

1 SAVE - version 1.7 - iese.fraunhofer.de;

Sonargraph Architect - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

ACC tools in its extensive and configurable support of rich sets of

module and rule types.

HUSACCT is a free-to-use open source tool, but it is not

intended to compete licensed tools. In contrast, we want to

contribute to the adoption and quality of ACC. HUSACCT is

intended for: 1) introduction of ACC within software

development organizations; 2) practical support in courses on

software architecture. We use the tool to introduce our students in

software architecture, architecture reconstruction, and compliance

checking. The tool helps them to relate abstract models to code

and to understand the different types of modules and rules.

HUSACCT is in its fourth year of development and each year

we performed ACCs with our tool on open source systems and

professional systems. The ACCs yielded interesting results for

customer organizations and helped us to test and improve the tool.

Furthermore, they confirmed the relevance of SRMA support,

since in many cases semantically rich module types were present.

Last year, we have worked on the improvement of the

accuracy, performance, and usability of the tool, and with

considerable results. For instance, analysis and processing time of

the source code of HUSACCT version 1.0 (136K lines of code)

was reduced from hours in version 2.0 to less than 20 seconds in

version 3.2. Future work will focus at first on further

improvements of existing functionality, such as the architecture

diagrams. Thereafter, we plan to extend the tool with more

options for ACC and architecture reconstruction.

In conclusion, HUSACCT shows that extensive and

configurable SRMA support is possible. SRMA support widens

the scope of ACC and enhances the architectural process.

Furthermore, we believe that SRMA support will contribute to the

adoption of ACC and consequently to the effectiveness of

software architecture in the practice of software engineering.

5. ACKNOWLEDGMENTS
The authors would like to thank colleagues and students of the

specialization “Advanced Software Engineering” at the

HU University of Applied Sciences for their contributions.

6. REFERENCES
[1] Clements, P. et al. 2010. Documenting Software

Architectures: Views and Beyond. Pearson Education.

[2] Knodel, J. and Popescu, D. 2007. A Comparison of Static

Architecture Compliance Checking Approaches. Working

IEEE/IFIP Conf. on Software Architecture (2007), 12–21.

[3] Perry, D.E. and Wolf, A.L. 1992. Foundations for the Study

of Software Architecture. ACM SIGSOFT Software

Engineering Notes. 17, (1992), 40 – 52.

[4] Pruijt, L. et al. 2013. Architecture Compliance Checking of

Semantically Rich Modular Architectures: A Comparison of

Tool Support. 2013 IEEE International Conference on

Software Maintenance (2013), 220–229.

[5] Pruijt, L. and Brinkkemper, S. 2014. A metamodel for the

support of semantically rich modular architectures in the

context of static architecture compliance checking.

WICSA 2014 Companion Volume (2014), 1–8.

[6] Shaw, M. and Clements, P. 2006. The golden age of software

architecture. IEEE Software. 23, 2 (2006), 31–39.

[7] De Silva, L. and Balasubramaniam, D. 2012. Controlling

software architecture erosion: A survey. Journal of Systems

and Software. 85, 1 (Jan. 2012), 132–151.

[8] Tichelaar, S. et al. 2000. Famix and xmi. Proceedings

Workshop on Exchange Formats. (2000), 296–299.

Figure 6. Implemented architecture: Analyse package

854

http://www.antlr.org/

