
Dependency Types and Subtypes in the Context of
Architecture Reconstruction and Compliance Checking

Leo Pruijt
HU University of Applied Sciences

Utrecht, The Netherlands

leo.pruijt@hu.nl

Jan Martijn E.M. van der Werf
University Utrecht

Utrecht, The Netherlands

j.m.e.m.vanderWerf@UU.nl

ABSTRACT

Software architecture reconstruction and compliance checking

rely on supporting tools that analyze the modules in the code and

their dependencies. Tools may provide a dependency type for

each dependency to provide more detail on the actual usage

relation. This study is aimed on the identification of dependency

characteristics which can be determined accurately and which

might be interesting for architects and researchers in the context

of architecture reconstruction and compliance checking. A

classification is proposed which distinguishes dependency types,

related subtypes, and several other characteristics. To enable

reflection on the usefulness of the classified dependency details, a

prototype implementation has been developed for the analysis of

Java based systems. A frequency analysis of the classified

dependency characteristics in three open source systems is

presented, as well as an analysis of a set of rule violating

dependencies in one of these systems.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques.

General Terms

Design, Verification.

Keywords

Software Architecture, Dependency Analysis, Static Analysis,

Architecture Compliance, Architecture Conformance

1. INTRODUCTION
Dependency analysis is “the process of determining a program’s

dependences” [8]. Dependency analysis, which focuses on

dependencies among classes and modules in the implemented

code, takes a central position in software architecture

reconstruction and architecture compliance checking (ACC).

Many tools and techniques are available to analyze a software

system and to reconstruct, visualize, or restructure its architecture

[3]. Furthermore, tools are available to check conformance

between architectural design and the implemented program code

in order to prevent architectural erosion [13].

Static analysis tools focus on the module view of software

architecture, where dependencies represent uses relations:

“Module A uses module B if A depends on the presence of a

correctly functioning B to satisfy its own requirements” [2]. In

line with Briand et al. [1], we use the term client-module for the

using module and server-module for the used module.

Dependencies may be typified to provide more details on the

actual usage of the other module (at code level mostly another

class). In a previous study [10] we have introduced a classification

of dependency types, based on research papers and professional

literature. We used the identified types to investigate whether

ACC-tools were able to detect dependencies of all these types in

the code. In the same study, we noted that dependency types were

not standardized among the tested tools. We reported that only

four tools1 out of the seven tools in our test provide dependency

types. Further, the number of types and the types themselves were

varying per tool. Some of these types were very specific, while

others covered many forms of code constructs. The following

examples illustrate our findings and show that types like

reference, access, or uses may represent quite different kinds of

usage.

 Constructor calls were reported by Lattix as “Construct with

Arguments”, by SAVE as "ACCESS", by Sonargraph as

“Uses new”, and by Structure101 as “calls”.

 Declaration of a local variable was reported by Lattix as

“Class Reference”, by SAVE as "ACCESS ", by Sonargraph

as “Uses”, and by Structure101 as “references”.

In this study, we build on this work, but now with another focus.

This time, we pursue the following research question: Which

dependency types and other characteristics provide useful and

accurate information for software architects and researchers? The

two requirements enclosed in the research question, useful and

accurate, both call for elaboration.

With useful, we mean that the dependency characteristics should

be suitable to answer relevant questions. For example, the

characteristics may be used to determine the severity of a

violation of an architectural rule, the strength of coupling between

two modules, or the degree of encapsulation of a module; both by

human interpretation (requires user-oriented terminology) as well

as by computation. A consequence is that dependency details that

may be used as indicators for the degree of coupling, or

encapsulation, should be separated strictly from each other. For

example, usage of a variable of another class compromises

encapsulation [18], thus is useful information. Furthermore, many

details are interesting, since they may be used to determine the

strength of coupling [1]; e.g., details about the used class (e.g., is

it an interface, or implementation class), and details about the kind

of usage (e.g., is it a call of normal method or of an inherited

method).

In this context, accuracy means that the dependency details

characterize the usage relation correctly, and uniquely. For

1 Lattix LDM - version 8.2.7 - lattix.com;

SAVE - version 1.7.1 - iese.fraunhofer.de; SAVE - version 1.7.1 - iese.fraunhofer.de;

Sonargraph Architect version 7.1.8 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia.
Copyright is held by the author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3393-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2797433.2797491

mailto:leo.pruijt@hu.nl
mailto:j.m.e.m.vanderWerf@UU.nl

example, if a dependency is typified as “access”, while this type

characterizes usage of a variable of another class, than this kind of

usage should really exist at code level. Further, its interpretation

should be unique, i.e., type “access” should not be used for

different kinds of usages, such as declaration of a local variable.

In conclusion: accurate dependency types require well-chosen,

distinctive identifiers.

To answer the research question stated above, we follow an

approach of design science research [7]. We have not yet

answered the question to its full extend. As a first step, we have

focused on the identification of dependency characteristics which

can be determined accurately and which might be interesting for

architects and researchers. We have improved and extended the

previous classification, and we have developed a prototype

implementation in architecture compliance tool HUSACCT [11]

that typifies dependencies in the code conform the classification

in this paper. Furthermore, it generates dependency and violation

reports with frequency statistics which provide interesting views

on a system, and which may be useful for future research.

The contribution of this paper is threefold. First, we present a

classification that distinguishes dependency types, subtypes, and

some other characteristics, and we explain the principles behind

the classification and the differences with the previous one.

Second, we present the results of a frequency analysis of the

classified dependency characteristics in three open source

systems. Third, we present the analysis results of rule violating

dependencies, subdivided in three groups for three different types

of rules.

The next section introduces the classification of dependency

types, subtypes and some other characteristics. Section 3 describes

the analysis results of the application cases. Section 4 discusses

related work, and Section 5 concludes the paper and presents

ideas for future work.

2. Dependency Characteristics
A dependency essentially describes that a client-module uses

another module, the server-module, as shown in Figure 1. At code

level, all dependencies relate a client-class and a server-class,

except in case of import dependencies, where the server-module

may also be a package or namespace. In addition to the client-

class and server-class, other characteristics may provide more

details on the dependency; for example, details on the kind of the

used class, details on how the server-class is used and which

class-member is used, or details on how the dependency may be

located or traced in the code. At code level, multiple dependencies

may be present in one line of code.

2.1 Dependency Types
A dependency type characterizes how the server-class is used by

the client-class at a certain location in the program code. In our

classification, we distinguish seven types of dependency in object-

oriented code: Access, Annotation, Call, Declaration, Import,

Inheritance, and Reference. Compared to our previous

classification [10], one type is added, namely Reference, and the

names of the types Access, Call and Declaration are shorter.

The dependency types Annotation, Declaration, Import, and

Inheritance are in concept the same and in practice quite simple to

differentiate (code examples are provided in the previous paper).

These four types have in common that they represent preparing

activities, which do not take care of transformations.

The most important difference with our previous classification is

the strict distinction between Access, Reference, and Call

dependencies. These three types have in common that they

represent executing activities, which take care of the

transformations. Below, we elaborate on these three types.

A dependency of type Access represents the actual usage (e.g.,

read or write) of a variable of a server-class. In case of such an

action, an Access dependency should link only to the server class

that contains the variable, and does not consider the type of the

accessed variable. Access of a variable of the client-class by the

client-class itself is not interesting in case of architectural

dependency analysis and is not reported as an Access dependency.

However, if a class accesses a variable, there is a dependency to

the type of that variable as well. This dependency on the variable

type is useful to report, but as type Reference, not as type Access.

Dependency type Call represents the invocation of a method of

the server-class. In case of such an action, a Call dependency

should link only to the server class that contains the method, not

to the return type of the invoked method. Calling a method of the

client-class by the client-class itself, is not interesting in case of

architectural dependency analysis and is not reported as a

dependency. Again, the dependency on the return type of the

method is useful and is reported as type Reference, not as type

Call. In case of chained call and/or access statements, only a

Reference dependency on the return type or type of the last

element in the chain is useful, since dependencies on the

preceding used types are reported as Call or Access dependencies.

A dependency of type Reference represents a link to the server-

class or an object of type of the server-class in the context of an

operational activity. At code level, references are often included

in access statements or call statements, where they precede the

actual variable or method to appoint the used class or object. In

these situations, Reference dependencies are not useful to report,

since they coincide with the Access and Call dependencies.

Consequently, many tools do not report these dependencies

(HUSACCT also does not). However, if a reference is not

followed by an access or call statement, it is useful to be reported.

For example, in case an object is passed as an argument.

2.2 Dependency Subtypes
A dependency subtype provides more detail on the usage of the

server-class by the client-class at a certain location in the program

code. A dependency type may have several subtypes, but a

Figure 1. Conceptual model of a dependency and its context

subtype belongs to one dependency type only, as depicted in

Figure 1. To determine which kind of information should be

expressed in dependency subtypes, we used the following criteria:

1) which information is available and reliable; 2) what might be

interesting for practitioners and researchers?

Several solutions are possible, based on the available data. A

conceptual model of the relevant concepts in the context of a

dependency is depicted in Figure 1. The figure shows that details

may be provided of the used server-class, or of the used elements

(methods or variables) within this class. Reversely, details may

also be shown on how and where within the client-class the usage

exists. Ideally, separate fields could be presented for each

viewpoint and characteristic. However, the user interfaces in a

tool restrict the options, so we condense information that suits our

criteria in one field only: subtype.

Our approach has resulted in twenty-nine subtypes, which are

shown in the tables below. The dependency types Annotation and

Import have no subtypes, currently. The subtypes of the types

Access and Call provide information on the kind of used server-

class, or in case of a “normal” class, provide information on the

used element of the server-class. The subtypes of dependency type

Declaration provide additional details on how the client-class uses

the server-class. The subtypes of type Inheritance tell more about

the type of the super class. Finally, also the subtypes of type

Reference provide additional details on how the client-class uses

the server-class. The first subtype of Access, Call, and Reference

each represents the default value of the type, in case none of the

other subtypes could be determined for sure.

2.3 Other Characteristics
Apart from dependency type and subtype, several other

characteristics of a dependency may be interesting, for example

line number, position within the line, or the containing method. In

addition, we describe three more-complex characteristics that may

provide interesting information, often in combination with

dependency type, subtype, or one of the other characteristics.

2.3.1 Direct/Indirect
The characteristic “isIndirect = true” indicates that the server-class

of the dependency cannot be determined without analysis of the

code of another class. In case of a direct dependency, the server-

class is traceable based on information in the source code of the

client-class, but in case of indirect dependencies, this is not

possible. For example, chained statements require the analysis of

the code of the classes that own the used variables (to determine

its type) and methods (to determine its return type) in the chain.

Furthermore, in case of access of an inherited instance variable, at

least the code of the parent super class needs to be analyzed to

determine where the variable is implemented and what type is

declared for the variable. A call of an inherited method requires a

similar approach.

2.3.2 Inheritance Related
The characteristic “isInheritanceRelated = true” indicates that the

dependency would not exist without inheritance. An inheritance

related dependency is caused by: 1) class or interface Inheritance

by means of an extends or implements statement; 2) Access of an

inherited variable; or 3) Call of an inherited method. These cases

may lead to indirect dependencies, like a dependency on a super-

super class, a Reference to the type of an accessed inherited-

attribute, or to the return type of a called inherited-method.

2.3.3 Inner Class Related
The characteristic “isInnerClassRelated = true” indicates that the

client-class or server-class of a dependency is an inner class.

3. Application Cases
We have analyzed the source code of three open source

applications. We used HUSACCT version 4.2 to analyze the code,

generate dependency reports, and generate architecture violation

reports. HUSACCT, a free-to-use, open source tool,

downloadable via http://husacct.github.io/HUSACCT/, provides

support for architecture compliance checking and architecture

reconstruction. In HUSACCT version 4.0 we have improved the

dependency analysis process of HUSACT to and beyond the point

where all dependencies in the benchmark test and FreeMind test

[10] are detected and reported, without false positives. Version 4.2

provides all the dependency types and subtypes conform the

classification in this paper. Furthermore, it provides a dependency

report and a violation report with frequency statistics of the types

and the other characteristics, and in addition lists of all

dependencies with their characteristics.

The analyzed open source subject systems are shown in Table 1

with their version, download address and size. The source code of

these systems was downloaded at May 8, 2015. The size of the

systems is presented in kilo lines of code (KLOC) of all lines

(including blank lines and comments) in all files with extension

“java”, as measured by HUSACCT_4.2. To enable comparison of

the results in the two following sub sections, we excluded the

packages of subject system HUSACCT 2.0 that contained classes

used for testing, or ANTLR-based generated lexer and parser

classes (more than 100 KLOC).

The results are shown in Table 2-5. For each subject system, the

numbers of reported dependencies are shown per type, subtype, or

other characteristic. The last column in each table shows the

average percentage of dependencies per characteristic (calculated

as the sum of the three system specific percentages of

dependencies with this characteristic, divided by three).

3.1 Frequency of Types and Subtypes
An overview of the frequency of dependency types and subtypes

in three open source systems is provided in Table 2. The most

relevant findings are described below.

1) All dependency types and subtypes in the classification are

present in the subject systems, although in various

frequencies. Notable is that nearly all types and subtypes were

present in all three subsystems. In case of ANTLR, no calls of

enumeration methods were reported, and in case of

HUSACCT, no access of interface variables and no

annotations were reported. In case of Spring, all dependency

types and subtypes were reported.

2) Dependencies of the types Access, Annotation, Call,

Declaration, Import, Inheritance, and Reference, represent

Table 1. Open Source Subject systems

System Download address Size (KLOC)

ANTLR 3.5 https://github.com/antlr/antlr3/releases 77

Spring 4.1.5 https://github.com/spring-projects/spring-framework/releases 893

HUSACCT 2.0 https://github.com/HUSACCT/HUSACCT/releases 60

http://husacct.github.io/HUSACCT/

respectively 7.6; 2.5; 37.6; 18.7; 9.0; 1.8, and 22.8 percent of

all the dependencies.

3) Although usage of a variable of another class compromises

encapsulation [18], it is quite common in the three systems.

However, large differences exist between the three systems. In

Spring, Access dependencies are limited to 3.5 percent only,

while in HUSACCT they account for 6.1 percent, and in

ANTLR for 13.2 percent.

4) In case of dependencies of type Access and Call, instance

members and library members are used most often. Interface

methods and variables are used at a limited scale only.

5) Declarations at the level of methods (subtypes Local variable,

Parameter, and Return type) outnumber the other declaration

subtypes by far.

6) References account for 22.8 percent of the dependencies. The

majority (16.4 percent) is of subtype “Type of Variable”,

subdivided in direct (15.5 percent) and indirect (0.9 percent).

The direct ones are caused predominantly by passing an

object as an argument, in which case a dependency on the

type of the passed object is registered.

An overview of the frequency of the other characteristics (direct,

indirect, inheritance related, and inner class related) is provided in

Table 3. The most relevant findings are the following:

1) The majority of dependencies are direct, but a considerable

fraction of the dependencies in the three systems is indirect:

12.7 percent on average. The largest fraction of indirect

dependencies is of type Call, followed by Reference, Access,

and finally Inheritance. Chained statements and usage of

Table 2. Frequency of dependency types and subtypes in three open source systems

Dependency Type Subtype ANTLR % HUSACCT % Spring % Average %

All All 27,046 100 39,349 100 421,001 100 100.0

Access All 3,583 13.2 2,393 6.1 14,652 3.5 7.6

 Variable 201 0.7 43 0.1 462 0.1 0.3

 Instance Variable 2,457 9.1 1,051 2.7 3,613 0.9 4.2

 Instance Variable Constant 11 0 90 0.2 2,062 0.5 0.2

 Class Variable 45 0.2 12 0 352 0.1 0.1

 Class Variable Constant 508 1.9 212 0.5 2,025 0.5 1.0

 Enumeration Variable 4 0 111 0.3 1,600 0.4 0.2

 Interface Variable 120 0.4 0 0 1,640 0.4 0.3

 Library Variable 237 0.9 874 2.2 2,898 0.7 1.3

Annotation - 982 3.6 0 0 16,369 3.9 2.5

Call All 9,790 36.2 15,373 39.1 157,406 37.4 37.6

 Method 415 1.5 318 0.8 5,413 1.3 1.2

 Instance Method 3,824 14.1 4,188 10.6 60,890 14.5 13.1

 Class Method 548 2.0 1,148 2.9 11,160 2.7 2.5

 Constructor 2,315 8.6 1,042 2.6 24,642 5.9 5.7

 Enumeration Method 0 0 50 0.1 234 0.1 0.1

 Interface Method 1,025 3.8 1,055 2.7 15,340 3.6 3.4

 Library Method 1,663 6.1 7,572 19.2 39,727 9.4 11.6

Declaration All 5,130 19.0 7,451 18.9 76,599 18.2 18.7

 Class Variable 42 0.2 48 0.1 767 0.2 0.2

 Exception 189 0.7 190 0.5 10,143 2.4 1.2

 Instance Variable 351 1.3 1,341 3.4 6,629 1.6 2.1

 Local Variable 3,098 11.5 2,977 7.6 32,929 7.8 9.0

 Parameter 1,088 4.0 1,863 4.7 17,613 4.2 4.3

 Return Type 362 1.3 1,032 2.6 8,518 2.0 2.0

Import - 1,059 3.9 4,883 12.4 45,252 10.7 9.0

Inheritance All 277 1.0 633 1.6 11,824 2.8 1.8

 Extends Class 80 0.3 62 0.2 1,313 0.3 0.3

 Extends Abstract Class 91 0.3 208 0.5 2,932 0.7 0.5

 Implements Interface 85 0.3 97 0.2 5,887 1.4 0.6

 From Library Class 21 0.1 266 0.7 1,692 0.4 0.4

Reference All 6,225 23.0 8,616 21.9 98,899 23.5 22.8

 Type 46 0.2 55 0.1 9,177 2.2 0.8

 Type Cast 392 1.4 461 1.2 5,599 1.3 1.3

 Return Type 976 3.6 1,826 4.6 18,338 4.4 4.2

 Type of Variable 4,811 17.8 6,274 15.9 65,785 15.6 16.4

inherited members predominantly cause the indirectness of

Call and Access dependencies.

2) On average, 9.1 percent of the dependencies is inheritance

related. The largest fraction of inheritance related

dependencies is caused by calls (4.6 percent) of inherited

methods. Notable is the difference between the three systems.

HUSACCT has a low average percentage of inheritance

related dependencies (5.8 percent), compared to ANTLR

(10.3 percent) and Spring (11.1 percent).

3) On average, 5.7 percent of the dependencies are inner class

related. Great differences exist in the average percentage per

system between the three systems: HUSACCT has only 0.5

percent; ANTLR has 5 percent; and Spring has 11.6 percent.

3.2 Types and Subtypes in Violations
To illustrate potential usage of the dependency types and subtypes

in the context of ACC, the results of a case are presented below.

Table 4 provides an overview of the frequency of dependency

types and subtypes in three sets of architecture-rule-violating

dependencies, while Table 5 shows the frequency of the other

characteristics (subtypes with null dependencies are not shown).

The violating dependencies in the table are detected in version 2.0

of HUSACCT itself. Two classes of 25-30 students in computer

Table 4. Number of violations per dependency type and subtype in HUSACCT_2.0

Dependency Type Subtype Back call % Facade % Not allowed % Average %

All All 506 100 193 100 333 100 100.0

Access All 0 0 6 3.1 17 5.1 2.7

 Enumeration Variable 0 0 6 3.1 0 0 1.0

 Library Variable 0 0 0 0 17 5.1 1.7

Annotation - 0 0 0 0 0 0 0.0

Call All 268 53.0 73 37.8 92 27.6 39.5

 Method 0 0 1 0.5 0 0 0.2

 Instance Method 207 40.9 9 4.7 0 0 15.2

 Class Method 30 5.9 15 7.8 0 0 4.6

 Constructor 31 6.1 10 5.2 1 0.3 3.9

 Interface Method 0 0 38 19.7 8 2.4 7.4

 Library Method 0 0 0 0 83 24.9 8.3

Declaration All 89 17.6 27 14.0 73 21.9 17.8

 Class Variable 1 0.2 0 0 4 1.2 0.5

 Instance Variable 32 6.3 8 4.1 5 1.5 4.0

 Local Variable 22 4.3 9 4.7 28 8.4 5.8

 Parameter 28 5.5 8 4.1 18 5.4 5.0

 Return Type 6 1.2 2 1.0 18 5.4 2.5

Import - 65 12.8 65 33.7 66 19.8 22.1

Inheritance All 0 0 1 0.5 11 3.3 1.3

 Extends Abstract Class 0 0 1 0.5 0 0 0.2

 From Library Class 0 0 0 0 11 3.3 1.1

Reference All 84 16.6 21 10.9 74 22.2 16.6

 Type 0 0 1 0.5 0 0 0.2

 Type Cast 7 1.4 8 4.1 2 0.6 2.0

 Return Type 5 1.0 8 4.1 14 4.2 3.1

 Type of Variable 72 14.2 4 2.1 58 17.4 11.2

Table 3. Frequency of direct, indirect, inheritance related, and inner class related dependencies.

 ANTLR % HUSACCT % Spring % Average %

Dependencies, all 27,046 100 39,349 100 421,001 100 100.0

- Direct 23,123 85.5 34,763 88.3 370,652 88 87.3

- Indirect 3,923 14.5 4,586 11.7 50,349 12 12.7

Inheritance related dependencies, all 2,778 10.3 2,274 5.8 46,637 11.1 9.1

- Access of inherited variable 781 2.9 629 1.6 4,368 1 1.8

- Call of inherited method 1,469 5.4 701 1.8 28,401 6.7 4.6

- Inheritance relation 277 1 633 1.6 11,824 2.8 1.8

- Reference 251 0.9 311 0.8 2,044 0.5 0.7

Inner class related dependencies, all 1,347 5 179 0.5 48,637 11.6 5.7

science implemented version 1.0 and 2.0 in two consecutive years.

Both years, six teams worked on different components of the

application. Some teams have followed the intended architecture

very well, while other teams introduced quite some violations.

More recent versions of HUSACCT support eleven types of rules

[9]. Violations of three types of rules are aggregated per type in

the tables. The back call ban allows no usage of an element in a

higher layer. The facade convention disallows incoming usage of

a component other than via its interface. Finally, two not-allowed-

to-use rules disallowed usage between a few components, while

other rules of this types disallowed the usage of “library classes

with user interface components” by subsystems not assigned with

responsibility to construct user interfaces. The most relevant

findings are the following:

1) Violations of back call rules are caused predominantly by the

invocation of methods. Of the 506 violating dependencies,

286 instances (53 percent) are of type Call, while no Access

or Inheritance dependencies are reported. Strikingly is that of

all the calls, not one makes use of an interface, in order to

reduce coupling. Based on the number of Declaration

dependencies can be observed that in total 89 variables are of

a prohibited type. Furthermore, 84 dependencies of type

Reference are reported. Most of them represent objects of a

prohibited type, passed as an argument.

2) The 193 dependencies that violate rules of type facade

convention are of more varied types. Encapsulation of the

components is compromised not only by Call, Declaration,

and Reference dependencies, but even by Inheritance and

Access; the latter caused by usage of enumeration variables.

Interestingly, two dependencies are inner class related. These

appeared to represent an import and an access of a variable of

a nested enumeration within the encapsulated component. A

positive observation is that more than half of the Call

dependencies make use of an interface.

3) Of the 333 violations of is-not-allowed-to-use rules, 323

report on the usage of a class in a restricted user interface

library. Consequently, it is not surprising that all 17 Access

dependencies, all 11 Inheritance dependencies, and 83 of the

92 Call dependencies identify usage of a library.

4. Related Work
We did not design the classification in isolation. We based the

classification of dependency types on professional literature, on

information provided by the Java and C# communities, and on

research papers that distinguish different dependency types, like

[17], [5], [6], [16], [12], and [14].

We also gained knowledge by the study of existing tools in the

field of architecture reconstruction and ACC. A few tools that we

included in a previous study [10], distinguish interesting sets of

dependency types. Especially the commercial tools Lattix and

Sonargraph Architect provided extensive sets. The tested version

of Sonargraph Architect distinguished the following types: Call,

Cast, Catch, Field type, Implementation, Inheritance, Parameter

type, Read, Returns, Throws, Type parameter, Uses, Uses

annotation, Uses inline, Uses new, Write. Lattix provided the

following types: Annotation (Runtime Visible, Runtime

Invisible), Class reference, Data Member Reference, Constructs

(Null Constructor, Construct with Arguments), Invokes (Virtual

Invocation, Static Invocation, Interface Invocation, Native

Invocation), Inheritance (Extends, Implements). Several

similarities between the types in these sets and those in our

classification are visible. First, details are provided on the type of

the used class (only in case of an interface), or how and where

within the client-class the usage exists. Second, most types in

these sets are also recognizable in our classification. Third, Lattix

structures its types also in two levels. Compared to these sets, our

classification adds more structure, clarity, and detail. For instance,

we make a clear distinction between dependency types that

represent preparing activities and executing activities; we strictly

separate the types Access, Call, and Reference; we provide a

balanced spread of subtypes over the types; and we provide more

details on the used server class or the used element within the

server class.

With respect to the results of the frequency analysis of

dependency types in the three open source systems, we found

some similarities in other work. For example, Tempero et al.

found that inheritance structures are used actively [15], also for

what we typified as access of an inherited variable or call of an

inherited method. In line with their research, our study has

revealed a high percentage of inheritance related dependencies in

the three analyzed systems; on average 9.1 percent.

Dyer et al. [4] showed that annotations were among the most used

new features of the last three Java versions. In line with their

work, our study showed that annotations with a reference to

another type (internal or external) accounted for 2.5 percent of the

dependencies in the three analyzed systems, on average.

5. Conclusions, Limitations and Future Work
In this study, we have focused on the identification of dependency

details which can be determined accurately and which might be

interesting for architects and researchers in the context of

architecture reconstruction and compliance checking. First, we

have discussed two requirements regarding dependency

characteristics: useful and accurate.

Second, we have presented a classification of dependency types,

subtypes, and other characteristics of dependencies. With respect

to dependency types, we have provided distinctions and

definitions that help to determine dependency types accurately

and to interpret assigned types correctly. We have proposed to

distinguish the dependency types Access, Call, and Reference

strictly and have paid special attention to these three types, since

Table 5. Number of violations for the attributes isIndirect, isInheritanceRelated, and isInnerClassRelated.

 Back call % Facade % Not allowed % Average %

Dependencies, all 506 100 193 100 333 100 100.0

Direct 426 84.2 155 80.3 301 90.4 85.0

Indirect 80 15.8 38 19.7 32 9.6 15.0

Inheritance related dependencies, all 36 7.1 1 0.5 11 3.3 3.6

Inheritance relation 0 0 1 0.5 11 3.3 1.3

Call of inherited method 36 7.1 0 0 0 0 2.4

Inner class related dependencies, all 0 0 2 1.0 0 0 0.3

they are easily confused, while they represent very different kinds

of usage, with different strengths of coupling.

Third, to illustrate the usefulness of the classified dependency

characteristics in the context of architecture reconstruction, we

have presented the results of a frequency analysis per

characteristic in three open source systems. Fourth, to illustrate

the usefulness of the classified dependency characteristics in the

context of architecture compliance checking, we have presented

the results of a frequency analysis per characteristic in a set of

more than thousand violating dependencies, subdivided in three

subsets, for three different types of rules. We have shown that all

dependency types and subtypes in our classification are used in

the subject systems, although in various frequencies. Furthermore,

we have shown that interesting findings can be derived from the

frequency analysis results. For instance, we have shown that

dependencies of type “Access” are used quite frequently (7.6

percent) within the three subject systems, although these usages

compromise encapsulation. In case of violating dependencies the

percentage is much lower (2.7 percent).

Several limitations apply to our work. First, we do not claim that

the presented classification of dependency types and subtypes is

complete and final. Especially the choice of the subtypes allows

several variations; at this point future research is needed. Next, we

think that it is important to realize that not all dependencies in the

code are detected and reported by HUSACCT; same as with other

tools [10]. Deficiencies may be present in HUSACCT itself or in

the included open source lexer and parser functionality. In

addition, we cannot guarantee that of all the reported

dependencies in the code of the subject systems, the dependency

types and subtypes are reported correctly, since many variations

may be present per type at the level of program code. However,

we have taken great care of the accuracy of dependency detection

and typifying. We have extended our automated test sets to cover

all types, subtypes and the other three characteristics, and we have

performed extensive manual tests.

Our work is not finished with this paper. As future work, we

intend to continue our research to answer the research question to

its full extent. We want to find out which types, subtypes and

other characteristics are most interesting to practitioners and

researchers. In addition, we want to determine at what level of

abstraction a characteristic is useful, or not. Some characteristics

might be useful at the level of a solitary dependency, while others

might be useful at a more aggregated level. Other questions that

we have in mind are the following. Do the types, subtypes and

other attributes form a useful base for metrics, e.g. to determine

the level of coupling, cohesion, or encapsulation at different levels

of aggregation, or to determine the severity of an architecture

violation? Moreover, do the types, subtypes and other attributes

form a useful base for architectural restructuring advice?

6. REFERENCES
[1] Briand, L.C., Daly, J.W. and Wust, J. 1999. A unified

framework for coupling measurement in object-oriented

systems. IEEE Transactions on Software Engineering. 25, 1

(1999), 91–121.

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Merson,

P., Ivers, J., Little, R. and Nord, R. 2010. Documenting

Software Architectures: Views and Beyond. Pearson

Education.

[3] Ducasse, S. and Pollet, D. 2009. Software Architecture

Reconstruction: A Process-Oriented Taxonomy. IEEE

Transactions on Software Engineering. 35, 4 (2009), 573–

591.

[4] Dyer, R., Rajan, H., Nguyen, H.A. and Nguyen, T.N. 2013.

A large-scale empirical study of Java language feature

usage.

[5] Feilkas, M., Ratiu, D. and Jurgens, E. 2009. The loss of

architectural knowledge during system evolution: An

industrial case study. 2009 IEEE 17th International

Conference on Program Comprehension (May 2009), 188–

197.

[6] Ko, A.J., Myers, B.A., Member, S., Coblenz, M.J. and

Aung, H.H. 2006. An Exploratory Study of How

Developers Seek , Relate , and Collect Relevant Information

during Software Maintenance Tasks. IEEE Transactions on

Software Engineering. 32, 12 (2006), 971–987.

[7] Peffers, K., Tuunanen, T., Rothenberger, M.A. and

Chatterjee, S. 2008. A design science research methodology

for information systems research. Journal of Management

Information Systems. 24, 3 (2008), 45–77.

[8] Podgurski, A. and Clarke, L.A. 1990. A formal model of

program dependences and its implications for software

testing, debugging, and maintenance. IEEE Transactions on

Software Engineering. 16, 9 (1990), 965–979.

[9] Pruijt, L. and Brinkkemper, S. 2014. A metamodel for the

support of semantically rich modular architectures in the

context of static architecture compliance checking. WICSA

2014 Companion Volume (Apr. 2014), 1–8.

[10] Pruijt, L., Köppe, C. and Brinkkemper, S. 2013. On the

Accuracy of Architecture Compliance Checking: Accuracy

of Dependency Analysis and Violation Reporting. 21st

International Conference on Program Comprehension (San

Francisco, CA, USA, 2013), 172–181.

[11] Pruijt, L., Köppe, C., van der Werf, J.M. and Brinkkemper,

S. 2014. HUSACCT: Architecture Compliance Checking

with Rich Sets of Module and Rule Types. Proceedings of

the 29th ACM/IEEE international conference on Automated

software engineering - ASE ’14 (Sep. 2014), 851–854.

[12] Saraiva, J., Soares, S. and Castor, F. 2010. Assessing the

impact of AOSD on layered software architectures.

European Conference on Software Architecture (2010),

344–351.

[13] De Silva, L. and Balasubramaniam, D. 2012. Controlling

software architecture erosion: A survey. Journal of Systems

and Software. 85, 1 (Jan. 2012), 132–151.

[14] Stafford, J.A. and Wolf, A.L. 2001. Architecture-level

dependence analysis for software systems. International

Jounal of Software Engineering and Knowledge

Engineering. 11, 4 (2001), 431–451.

[15] Tempero, E., Yang, H.Y. and Noble, J. 2013. What

programmers do with inheritance in java. 27th European

Conference on Object Oriented Programming (2013), 577–

601.

[16] Terra, R. and Valente, M. 2009. A dependency constraint

language to manage object •oriented software architectures.

Software: Practice and Experience. 39, 12 (2009), 1073–

1094.

[17] Tichelaar, S., Ducasse, S. and Demyer, S. 2000. Famix and

xmi. Proceedings Workshop on Exchange Formats. (2000),

296–299.

[18] Wirfs-Brock, R. and Wilkerson, B. 1989. Object-oriented

design: a responsibility-driven approach. Object-oriented

programming systems, languages and applications

(OOPSLA ’89) (1989), 71–75.

