Software Architecture Reconstruction Research Support
as Provided by HUSACCT

Leo Pruijt Wiebe Wiersema Jan Martijn van der Werf
HU University of Applied Sciences HU University of Applied Sciences Utrecht University
Utrecht Utrecht Utrecht
The Netherlands The Netherlands The Netherlands
leo.pruijt@hu.nl wiebe.wiersema@hu.nl jm.e.m.vanderWerf@uu.nl

ABSTRACT

Software architecture reconstruction techniques may be used to
understand and maintain software systems, especially in these
cases where architectural documentation is outdated or missing.
This paper presents the architecture reconstruction functionality
of HUSACCT and describes how this functionality may be used
and extended with algorithms in support of reconstruction
research focusing on modular architectures. The tool provides a
graphical user interface to select an algorithm, edit its
parameters and to execute or reverse the algorithm. To study the
results, browsers and diagrams are available. Furthermore, a user
interface is provided to enhance the determination of the
effectiveness of algorithms by means of the MoJoFM metric.

CCS CONCEPTS

- Software and its engineering~Software architectures;

« Software and its engineering~Software maintenance tools

KEYWORDS

Software Architecture; Module View; Architecture
Reconstruction; Architecture Compliance

ACM Reference Format:

Leo Pruijt, Wiebe Wiersema, and Jan Martijn van der Werf. 2017.
Software Architecture Reconstruction Research Support

as Provided by HUSACCT. In Proceedings of ECSA 17, Canterbury,
United Kingdom, September 11-15, 2017, 4 pages.
https://doi.org/10.1145/3129790.3129819

1 INTRODUCTION

Software architecture reconstruction (SAR) 1is a reverse
engineering approach that aims at reconstructing viable
architectural views of a software application, which may be used
to understand and re-document the application [2]. In this paper,
we focus on the reconstruction of the module view [1]. A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

ECSA '17, September 11-15, 2017, Canterbury, United Kingdom
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5217-8/17/09...$15.00
https://doi.org/10.1145/3129790.3129819

modular architecture describes the modular elements, their form
(properties and relationships) and the rationale [5], where
properties and relationships express architectural rules.

HUSACCT [8] is a free-to-use, open source tool
(husacct.github.io/HUSACCT) that was designed to support
software architecture compliance checking (SACC); a means to
prevent or detect architectural erosion by comparison of the
intended architecture and the implemented architecture of a
system. HUSACCT focuses on the support of a semantically rich
modular architecture (SRMA) [7], a term that we use for an
expressive modular architecture description, composed of
semantically different types of modules (e.g., subsystem, layer
component), which are constrained by different types of rules
such as constraints related to layers, or basic dependency
constraints (e.g., Is not allowed to use).

Since version 5.0, extensive SAR support is provided with
algorithms and a SAR GUL In [11], we reported on experiments
with a layers reconstruction algorithm. In this paper, we
introduce the SAR support of HUSACCT to the research
community. The tool may be used to apply existing algorithms,
and it facilitates the development of new reconstruction
algorithms targeted at modular architectures.

This paper is outlined as follows. Section 2 introduces
HUSACCT and the SRMACC metamodel. Section 3 presents the
SAR functionality and a provided algorithm, while Section 4
focuses on research support, including algorithm development
and effectiveness measurement. Section 5 discusses the provided
support and related work, while Section 6 concludes this paper.

2 HUSACCT

HUSACCT distinguishes itself from other SACC-tools by the
provision of extensive support of SRMAs. In this context, we
focus SAR on the reconstruction of semantically different
modules and rules, which are related to different architectural
patterns [6]. The SAR features build on the existing functionality
to define an intended architecture, analyze code, register the
implemented architecture, and check the compliance.

2.1 SRMACC Metamodel

To enable the provision of SRMA support, we have developed
the SRMACC metamodel [10], whereof the central part is
included in Fig. 1. It includes concepts and associations relevant
to understand our approach. A SoftwareArchitecture may contain
Modules of different ModuleTypes, where AppliedRules, each of a
certain RuleType, may constrain the Modules.

RuleType
= Dependency Type
ModuleType 0" hasDefault 0" |- name Violation :
_ . - description 0.* - message -id

- name - allowedValues . severity - name
- description I - severity allofvsAs = - dlrecl.

1 allows 0.* | o Excdption 0.* 0.* - severily

| 1
defines deflnes concexnsDependency
SoftwareArchitecture
: 1 isValidFor defines
- name
. ~Finti n sUnit
l" description " o i concergs 0.1 0.*
0.* 0.*
0.* 0.* Dependency
= 1 isConstrainedBy . P 1
Module - 0 AppliedRule rojec - line
1 - name from -1d . - e ,
~~|. description o - description N - \'CI;IOI]. 0 0.*
* |- value - path
has 0.* 1 0-1 IsObjectIn 0 has - language
SybModules Q | Exceptipn "
1 1 1 1
from to

Layer 0.* AnalyzedSoftwareUnit 1

- hierarchicalLevel - DefinedSoftwareUnit N
mﬂps I 0 wiraces]]I]ll‘lllENﬂlllE
| uniqueName Fo=-=----------2-type N
0 - type - visibility 0.
- contents

Figure 1: SRMACC Metamodel

The metamodel proves to be suitable for SAR as well. In fact,
SAR can be considered as the reversed approach of SRMA-based
SACC. For example in the case of layers, SAR tries to identify
sets of units in the code that conform to the semantics of a
layered architecture, while SACC checks the compliance of the
code to the semantics of a defined layered architecture.

In terms of the SRMACC metamodel, SAR tries to identify
sets of AnalyzedSoftwareUnits, packages and classes in the code,
that conform to the default RuleTypes of ModuleType “Layer”.
In case sets are identified, a Module of ModuleType “Layer” is
created for each set. The AnalyzedSoftwareUnits in a set are
assigned to the Module by means of DefinedSoftwareUnits, which
hold the data to trace the real units in analyzed code.

2.2 Definition of the Intended Architecture

Modules and rules can be added manually and programmatically
to the intended architecture. Fig. 2 shows the GUI where the
intended architecture is created and maintained manually.
Modules can be added, edited and removed; software units can
be assigned and removed; and rules can be added, edited or
removed.

Currently HUSACCT provides extensive support for five
common ModuleTypes (Subsystem, Layer, Component, Facade,
External library) and eleven common RuleTypes. Relevant
examples of extensive support in the context of SAR are the
following: a) when a module of type Layer is created, two
applied rules (back call ban and skip call ban) will be created,
based on the default rule types associated to the module type of
the module; b) when a module of type Component is created, a
submodule of type Interface will be created as well.

3 SAR SUPPORT

SAR support is provided to the user by means of the GUI shown
in Fig. 3. Currently, the SAR GUI provides three tabs. The first

two tabs show a set of selectable approaches. After selection, the
parameters and their set values are shown. The parameter values
may be adjusted by means of the Edit Approach option. The first
tab shows approaches for practical usage, sufficiently mature,
while the second tab shows immature approaches. All these
approaches have been developed at the HU University of
Applied Sciences, though several layer identifying algorithms are
based on work published by authors from other universities [11].

The Apply-button will start the selected approach. To allow
an interactive process of reconstruction, the results may be
reversed or edited, and several approaches may be applied
consecutively to create a hierarchy of decompositions. The
results will be visible in the view “Define intended architecture”,
shown in Fig. 2. Over there, a module may be edited (module
name and type, assigned software units) or deleted. Furthermore,
a module may be selected for another reconstruction iteration. If
a module in the intended architecture is selected by the tool user,
an algorithm may use this module as starting node; otherwise

[Define intended architecture 5 4: 45 aidiidin i il sl il o o [
Module Hierarchy Module Properties
14 SoftwareArchitecture Module name __analyse
9 analyse
—0 analyselnterface Description
= Layerd_AnalyseSer
@ = Layerd_presentation
§ = Layer2_task ~ECDULD ‘ Component BH Update ‘
o E Maws? " Assigned Software Units
® EEZ";:MMS Software unit name [Type Add
ps husacct analyse.infrastructure PACKAGE
= ° husacct analyse.absiraction PACKAGE
B parme husacet analyse.domain PACKAGE
= Layert pa;am: ecrts i husacct analyse.task PACKAGE
B b_nnt;)r(ae’ st ete husacct.analyse.presentation PACKAGE
o cnmmn: husacct.analyse.AnalyseSenicelmpl (CLASS
@ &] control
o E define Rules
[externalinterface Ruletype | To module | Enabled Except Add
@ £] graphics Facade convention on
o £] validate
A

Figure 2: Intended architecture as defined in HUSACCT

[T] software Architecture Reconstruction

Practical Approaches | Research Appro:
Approaches
Layer identification - Within selected module {or root)

Component and Subsystem identification - Within selected module (or root)
External System identification

Iterative of layers, and

U | MoJo |

- Within selected module (or root)- With external systems

Parameters
Parameter |
AllDependencies

Value

RelationType

Granularity Packages
Threshold 5

‘ Apply. H Reverse H Clear All ‘ ‘ Edit Approach |

Figure 3: Reconstruct architecture user interface

the system’s root will be used.

As example, we discuss an iterative algorithm, selected in
Fig. 3, that makes use of the first two algorithms in the list.
When it is started, first the input set of to-be-used software units
is determined. In this case, we started with an empty intended
architecture, so no module was selected. Instead, all software
units in the root of the source code of HUSACCT 5.3 were used.

Next, the iterative algorithm will execute the Layer
identification algorithm. If this algorithm identifies layers, based
on relatively strict parameter values [11], it will add modules to
the intended architecture; as submodules of the selected module
or of the root module. If no layers are identified, the Component
and Subsystem identification algorithm is executed, which may
add modules in the same way. In the following iterations, the
newly added modules are selected consecutively, and the
procedure is repeated. This way a multi-level decomposition tree
of modules may be reconstructed.

The module tree shown in Fig. 2. is the result of the iterative
algorithm. Eight modules are added to the root of the
architecture; five of type Component and three of type
Subsystem. In the figure, component analyse is expanded, and its
submodules are shown; one of type Interface and four of type
Layer. Furthermore, six software units assigned to analyse are
visible, as well as the rule of type Facade convention [10].

Fig. 4 shows the result in the form of an intended architecture

«Interface» —© «layers

analyselnterface I 1 Layer4_AnalyseServ

T L3 T
\ 1 ‘ | N
v 1 . 1

' y L ! is .
\ \ s \ 4«‘ ayer» =
v : e
\ | . : Layer3_presentation
1 v . 1--7
L ‘. il o= - l,
wlayers =| .-~ 200 28
Layer2_task Il.
1
‘.
-~ 1
“azg \
RS
«layers =

Layerl_infrastruct_etc

Figure 4: Intended architecture diagram with SAR result

diagram. The submodules of analyse with their module types are
visible. A black, dashed arrow in the diagram represents
dependencies, of which the number of dependencies is shown.

4 SAR RESEARCH SUPPORT

Researchers can make use of the SAR support, described in the
previous section, to study the results of existing algorithms and
parameters. Moreover, researchers can develop their own
algorithms relatively easily. In addition, functionality is provided
to measure the effectiveness of an algorithm.

4.1 Algorithm Development

New algorithms need to be programmed in Java within the
context of HUSACCT, of which the source can be downloaded
from github.com/HUSACCT/HUSACCT. The reconstruction
algorithms are located in module reconstruct within the Task
layer of component analyse, as visible in Fig. 2 where the
submodules of reconstruct are visible as well. The SAR GUI is
included in the Presentation layer. A general mechanism is
implemented to easily include a new algorithm in the GUI, to
support the control options within the GUI, and to work with
parameters. If needed, an additional tab can be created within
the GUI, to group a list of new algorithms.

Algorithms have to communicate with their environment. For
this purpose, service interfaces of several components are
available. Fig. 5 shows the context of module reconstruct.
AnalyseDomainService provides data on request from the
repository with code analysis results; the software units and
their dependencies. The service interfaces of component define
may be used to request data on the existing intended
architecture and to add, edit or delete modules and rules.
ValidateService may provide data on violations to a given rule.

4.2 Algorithm Effectiveness

To measure the effectiveness of algorithms, we make use of the
MoJoFM metric, an effectiveness measure for software clustering
algorithms based on MoJo distance as presented by Wen and
Tzerpos [12]. We wuse their implementation MoJo 2.0
(downloaded April 2016 from: www.cs.yorku.ca/~bil/downloads).

Fig. 6 shows the MoJoFM GUI within HUSACCT. In the panel
“Compare Architectures”, two input files with decomposition
structures have to be provided (in a specific format): a gold

reconstruct

AN

AnalyseDomainService DefineService SARgervice Validatg

Service

analyse.domain define validate

Figure 5: The context of the Reconstruct module

standard, and a to-be-compared structure. An algorithm that
produces a decomposition structure deviating completely from
the gold standard results in a MoJoFM value of 0%, while an
algorithm that produces the same decomposition structure
results in a MoJoFM value of 100%. The input files can be created
by means of the provided functionality in the top panel.

For example, first we have created an intended architecture of
HUSACCT manually, which acts as the gold standard, and we
have exported the architecture in the required file format. For
the reconstructed architecture in Fig. 2, we did the same.
Comparison resulted in a MoJoFM value of 92.31%, as visible in
Fig. 6. Please note that the MoJoFM metric does not take the
module types into account, only the decomposition structure and
the assignment of the software units to the modules.

4 DISCUSSION

In a previous study [7], we reported on the results of an SRMA-
test on eight academic and commercial SACC-tools. However,
none of these tools provide SAR support similar to HUSACCT.
For example, Structurel01 (structurel0l.com) reconstructs a
useful view on the code. Software units are structured vertically
and horizontally, based on the package structure and on
dependencies between the packages. A difference with our
approach is that Structure101 does not provide an intended
architecture as in our approach, with different module and rule
types. Rules are linked to software units directly. Furthermore,
Structure101 does not provide a set of algorithms and a GUI that
allows an interactive and incremental process of reconstruction.

The algorithms in this paper are used to illustrate the SAR
environment and the SAR process; nothing more. Our layers
reconstruction approach and the role of its parameters is
described in [11]. The approach is partly based on published
algorithms, especially those of Goldstein and Segal [3] and Laval
et al. [4]. For an explanation of the algorithm and a discussion of
related work, we refer to the paper itself. The other “practical
approaches” have not yet been presented in published work.
They are subject to ongoing research. Although the iterative
algorithm, which is used in the examples in this paper, performs
well in case of HUSACCT’s own source code, it does not have to
do so in case of other systems. Especially the identification of
components and the facade pattern is problematic, since
numerous variations in the source code exist.

—
(] Software Architecture Reconstruction o' i
| Practical Approaches | Research Approaches HU | MoJo |
Export curent Intended Architecture
Gompare Architectures
Gold standard

Compare Architectures The calculated MoJoFM value is: 92.31%

Figure 6: MoJoFM GUI within HUSACCT

Finally, not all dependencies in the code are detected and
reported by HUSACCT; same as with other tools [9]. This may
influence the results of an algorithm. Deficiencies may be
present in HUSACCT itself or in the included open source lexer
and parser. However, we have taken great care of the accuracy
of dependency analysis. We are making use of large automated
test sets to cover many types and subtypes of dependencies.

5 STATUS AND OUTLOOK

HUSACCT supports software architecture conformance checks
(SACC), but since version 5 it provides extensive software
architecture reconstruction (SAR) support as well. HUSACCT
distinguishes itself from other tools in its extensive and
configurable support of rich sets of module and rule types.

Currently, HUSACCT is in its sixth year of development and
each year it is used in student courses on software architecture,
and it is used to performed SACC and/or SAR on open source
systems and professional systems. The SAR functionality is in its
second year of development, and many improvements have been
made to the GUI, the control mechanism, and the algorithms.
The SAR user environment appears to be stable and several
algorithms provide useful results in practical cases.

Future work will focus on improvement of existing
algorithms, the development of new algorithms, and the
effectiveness of these algorithms in practical cases.

REFERENCES

[1] Clements, P. et al. 2010. Documenting Software Architectures: Views and Beyond.
Pearson Education.

[2] Ducasse, S. and Pollet, D. 2009. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Transactions on Software Engineering. 35, 4
(2009), 573-591.

[3] Goldstein, M. and Segall, I. 2015. Automatic and Continuous Software
Architecture Validation. 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. (2015), 59-68.

[4] Laval, J. et al. 2013. OZONE: Layer Identification in the presence of Cyclic
Dependencies. Science of Computer Programming. 78, 8 (2013), 1055-1072.

[5] Perry, D.E. and Wolf, AL 1992. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes. 17, (1992), 40-52.

[6] Peters, J. et al. 2016. Architectural Pattern Definition for Semantically Rich
Modular Architectures. 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA) (Venice, 2016), 256—261.

[7] Pruijt, L. et al. 2013. Architecture Compliance Checking of Semantically Rich
Modular Architectures: A Comparison of Tool Support. 2013 IEEE International
Conference on Software Maintenance (2013), 220-229.

[8] Pruijt, L. et al. 2014. HUSACCT: Architecture Compliance Checking with Rich
Sets of Module and Rule Types. Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering - ASE '14 (Sep. 2014), 851-854.

[9] Pruijt, L. et al. 2016. The Accuracy of Dependency Analysis in Static
Architecture Compliance Checking. Software: Practice and Experience. (2016).

[10] Pruijt, L. and Brinkkemper, S. 2014. A metamodel for the support of
semantically rich modular architectures in the context of static architecture
compliance checking. WICSA 2014 Companion Volume (Apr. 2014), 1-8.

[11] Pruijt, L. and Wiersema, W. 2016. Dependency Related Parameters in the
Reconstruction of a Layered Software Architecture. Proceedings of the 10th
European Conference on Software Architecture Workshops (2016), 1-7.

[12] Wen, Z.W.Z. and Tzerpos, V. 2004. An effectiveness measure for software
clustering algorithms. 12th IEEE International Workshop on Program
Comprehension (2004), 194-203.

