
Compositional Verification of

Asynchonously Communicating Systems

Jan Martijn E.M. van der Werf

Department of Information and Computing Science

Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.m.e.m.vanderwerf@uu.nl

Abstract. Within a network of asynchronously communicating systems, the com-

plete network is often not known, or even available at run-time. Consequently,

verifying whether the network of communicating systems behaves correctly, i.e.,

the network does not contain any deadlock or livelock, is impracticable. As such

systems are highly concurrent by nature, Petri nets form a natural choice to model

these systems and their communication.

This paper presents a formal framework based on a generic communication con-

dition to verify correctness of the system by pairwise checking whether these

systems communicate correctly and fulfill some condition, then the whole net-

work is guaranteed to behave correctly. As an example, this paper presents the

elastic communication condition.

1 Introduction

Dividing the functionality of a system into subsystems such that each subsystem imple-

ments its own specific functionality is not new. Already in the sixties of the last century,

McIlroy [17] suggested to use components to design and implement software systems.

A component implements a specific part of the specification, masking its internal de-

sign [22].

A component offers some functionality, and, in order to deliver this, it uses func-

tionality of other components. This way, a component has two roles: it is a provider

and a consumer. From a business oriented view, a component sells functionality, and to

meet its commitments, it buys functionality of other components [4, 12].

With the advent of paradigms like Service Oriented Architectures [3, 18], systems

become more and more distributed. Some of the components of the system may be

offered by third parties. As these third parties do not expose which components their

systems use, the individual systems form a, possibly unknown, large scale ecosystem:

a dynamic network of communicating components. These systems communicate via

messages: a component requests functionality from another component, which in turn

eventually sends its answer. Hence, communication between the components is asyn-

chronous by nature. Verification of asynchronously communicating systems is known

to be a hard problem.

The nature of this class of communicating systems is asymmetric. A provider com-

mits itself to deliver some functionality. It does not matter what other components that

2

A G

C
H

D
J

BG

H

J

Fig. 1. Example of a component tree of four components A,B,C and D.

provider needs, as long as it keeps delivering the requested functionality. Therefore, the

connections between components have a direction: they are initiated by some client, and

accepted by a provider. Consider the component architecture depicted in Fig. 1. There

are four components, A, B and C, which are connected via ports G, H and J . The ©⊲
operator indicates the direction of the communication. In this example, component B

delivers a service to component A over port G, and to do so, it uses the functionality of

its children C and D.

At run-time, components use other components to deliver their functionality. In

this way, the components form a component tree. The dynamic binding of components

causes the component tree to be unknown at design time. This makes verification of

behavioral correctness very hard. Thus, if we want to ensure behavioral correctness,

we need a verification method that only considers pairwise compositions of compo-

nents: if each component is sound, and all pairwise connected components satisfy some

condition, the whole tree should be sound.

In [16], the authors prove that in general verification of such a dynamic, distributed

setting is undecidable. Current research results (cf. [15,20,25,26]) are based on a mes-

sage bound.

In this paper, we present a framework based on communication conditions to verify

a subclass of asynchronously communicating systems compositionally [24]. The formal

foundation of the framework is Petri nets, in which communication is asynchronous by

nature. Petri nets can be used both for modeling the internal activities of a component,

as well as for the interaction between components. We focus on soundness of systems:

a system should always have a possibility to terminate.

This paper is structured as follows. Section 2 presents the basic notions used through-

out the paper. Next, Sect. 3 introduces the notion of components and their composition.

In Sect. 4, we present a general framework to verify correctness of component trees

compositionally. Next, Sect. 5 shows a subclass of communicating systems based on

this general framework. Section 6 concludes the paper.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use |S| for

the number of elements in S. Two sets U and V are disjoint if U∩V = ∅. A bagm over

3

S is a function m : S → IN , where IN = {0, 1, 2, . . .} denotes the natural numbers.

We denote e.g. the bag m with an element a occurring once, b occurring three times

and c occurring twice by m = [a, b3, c2]. The set of all bags over S is denoted by INS .

Sets can be seen as a special kind of bag were all elements occur only once. We use +
and − for the sum and difference of two bags, and =, <, >, ≤, ≥ for the comparison

of two bags, which are defined in a standard way. The projection of a bag m ∈ INS on

elements of a set U ⊆ S, is denoted by m|U , and is defined by m|U (u) = m(u) for all

u ∈ U and m|U (u) = 0 for all u ∈ S \ U . Furthermore, if for some n ∈ IN , disjoint

sets Ui ⊆ S with 1 ≤ i ≤ n exist such that S =
⋃n
i=1 Ui, then m =

∑n
i=1m|Ui

.

A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If n > 0 and

σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length of a sequence is

denoted by |σ|. The sequence of length 0 is called the empty sequence, and is denoted

by ǫ. The set of all finite sequences over S is denoted by S∗. We write a ∈ σ if a

1 ≤ i ≤ |σ| exists such that σ(i) = a. Concatenation of two sequences ν, γ ∈ S∗,

denoted by σ = ν; γ, is a sequence defined by σ : {1, . . . , |ν| + |γ|} → S, such that

σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) = γ(i− |ν|) for |ν|+ 1 ≤ i ≤ |ν|+ |γ|.

A projection of a sequence σ ∈ S∗ on elements of a set U ⊆ S (i.e. eliminating the

elements from S \U) is denoted as σ|U . The bag denoted the elements of a sequence σ

and their occurrences is called the Parikh vector and is denoted by −→σ .

Labeled transition systems To model the behavior of a system, we use a labeled tran-

sition system. A labeled transition system (LTS) is a 5-tuple (S,A,→, s0, Ω) where S

is a set of states; A is a set of actions; →⊆ (S × (A ∪ {τ}) × S) is a transition rela-

tion, where τ 6∈ A is the silent action. (S,→, ∅) is a labeled directed graph, called the

reachability graph; s0 ∈ S is the initial state; and Ω ⊆ S is the set of accepting states.

Let L = (S,A,→, si, Ω) be an LTS. For s, s′ ∈ S and a ∈ A ∪ {τ}, we write

(L : s
a

−→ s′) if and only if (s, a, s′) ∈→. An action a ∈ A ∪ {τ} is called enabled

in a state s ∈ S, denoted by (L : s
a

−→) if a state s′ exists such that (L : s
a

−→ s′).

If (L : s
a

−→ s′), we say that state s′ is reachable from s by an action labeled a.

A state s ∈ S is called a deadlock if no action a ∈ A ∪ {τ} exists such that (L :

s
a

−→). We define =⇒ as the smallest relation such that (L : s =⇒ s′) if s = s′ or

∃s′′ ∈ S : (L : s =⇒ s′′
τ

−→ s′). As a notational convention, we may write
τ

=⇒ for

=⇒. For a ∈ A, we define
a

=⇒ as the smallest relation such that (L : s
a

=⇒ s′) if

∃s1, s2 ∈ S : (L : s =⇒ s1
a

−→ s2 =⇒ s′).

We lift the notation of actions to sequences. For the empty sequence ǫ, we have

(L : s
ǫ

−→ s′) if and only if (L : s =⇒ s′). Let σ ∈ A∗ be a sequence of length n > 0,

and let s0, sn ∈ S. Sequence σ is a firing sequence, denoted by (L : s0
σ

−→ sn),

if states si−1, si ∈ S exist such that (L : si−1
σ(i)
=⇒ si) for all 1 ≤ i ≤ n. We

write (L : s
∗

−→ s′) if a sequence σ ∈ A∗ exists such that (L : s
σ

−→ s′), and

say that s′ is reachable from s. The set of reachable states from some state s ∈ S is

defined as R(L, s) = {s′ | (L : s
∗

−→ s′)}. We lift the notation of reachable states

to sets by R(L,M) =
⋃
s∈M R(L, s) for M ⊆ S. A set of states M ⊆ S is called a

livelock if M ⊆ R(L,M). An LTS L = (S,A,→, s0, Ω) is called weakly terminating

if Ω ⊆ R(L, s0).

4

Petri nets A Petri net [19] is a 3-tuple N = (P, T, F) where (1) P and T are two

disjoint sets of places and transitions respectively; (2) F ⊆ (P ×T)∪ (T ×P) is a flow

relation. The elements from the set P ∪ T are called the nodes of N . Elements of F

are called arcs. Places are depicted as circles, transitions as squares. For each element

(n1, n2) ∈ F , an arc is drawn from n1 to n2. Two Petri nets N = (P, T, F) and

N ′ = (P ′, T ′, F ′) are disjoint if and only if (P∪T)∩(P ′∪T ′) = ∅. LetN = (P, T, F)
be a Petri net. Given a node n ∈ (P∪T), we define its preset •

N n = {n′ | (n′, n) ∈ F},

and its postset n•N = {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to

sets. Given a set U ⊆ (P ∪ T), •
N U =

⋃
n∈U

•
N n and U•

N =
⋃
n∈U n

•
N . If the context

is clear, we omit the N in the superscript.

A marking of N is a bag m ∈ INP , where m(p) denotes the number of tokens in

place p ∈ P . If m(p) > 0, place p is called marked in marking m. A Petri net N with

corresponding marking m is written as (N,m) and is called a marked Petri net

A system is a 3-tuple S = (N,m0, Ω) where (N,m0) is a marked Petri net with

N = (P, T, F) and Ω ⊆ INP is the set of final markings. Its semantics is defined by an

LTS N (S) = (INP , T,→,m0, Ω) such that (m, t,m′) ∈→ iff •t ≤ m and m′ + •t =

m+ t• for m,m′ ∈ INP and t ∈ T . We write (N : m
t

−→ m′), R(N,m0), L(N,m0),

and T (N,m0) as a shorthand notation for (N (N,m0) : m
t

−→ m′), R(N (N,m0)),
L(N (N,m0)), and T (N (N,m0)), respectively.

A marking m ∈ R(N,m0) is a home marking if m ∈ R(N,m′) for all m′ ∈
R(N,m0).

3 Asynchronously Communicating Systems

In a network of asynchronously communicating systems, systems communicate via

message passing. We call these systems components of the network. Two components

are connected via some interface that defines which messages are exchanged between

the systems. As communication is asynchronous, Petri nets [19] form a natural choice to

model the communication between these components. We model the different messages

that can be sent and received via special places, called interface places. A component

either receives messages from an interface place, which is then called an input place, or

it sends messages to an interface place, which we then call an output place.

As components communicate with multiple components, we partition the interface

places of a system into ports. A transition can send or receive messages via a port. For

this, we introduce the notion of a transition sign. A transition sends messages to a port

(sign !), receives messages from a port (sign ?) or does not communicate at all with a

port (sign τ).

The marking of a component represents the internal state of the component, to-

gether with messages it has sent and received. As initially no messages have been sent

or received, the initial marking of a component has no messages in its interface places.

Similarly, in the desired final marking of a component, all messages have been pro-

cessed, i.e., all interface places should be empty. Often, the desired final marking of

a component represents an idle state, from which the component can respond on new

messages again. In terms of Petri nets, the final marking is often a home marking.

5

G J

H
iN=fN

a

b

c

d

e

g

h

n

o

t

iM=fM

G

a

b

c

d

e

N

M

Fig. 2. Two components N and M with three ports G, H and J , where components N and M

share port G.

Figure 2 depicts two components N and M . Component M has a single port G

with three input places a, c and d, and two output ports b and e. ComponentN has three

ports, G, H and J . The internal structure of a component, i.e., the component without

the interface places, is called the skeleton.

Definition 1 (Component, skeleton, sign). A Component is defined as an 8-tuple

(P, I,O, T, F,G, i, f) where ((P ∪ I ∪ O), T, F) is a Petri net; P is a set of inter-

nal places; I is the set of input places, O is the set of output places such that P , I and

O are pairwise disjoint and •I = O• = ∅; G ⊆ P(I ∪ O) is a partitioning of the

interface places, an element of G is called a port; a transition either sends or receives

messages, i.e., •G∩G• = ∅ for allG ∈ G. i ∈ INP is the initial marking, and f ∈ INP

is the final marking.

Two components N and M are called disjoint if (PN ∪ IN ∪ ON ∪ TN) ∩ (PM ∪
IM ∪ OM ∪ TM) = ∅. A component N is called closed if IN = ON = ∅. The set

of all components is denoted by N. As a shorthand notation, we write R(N,m) for

R((PN ∪ IN ∪ON , TN , FN),m) for m ∈ INPN∪IN∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F) with F =
FN ∩ ((PN × TN) ∪ (TN × PN)). The skeleton system of N is defined as the system

S(N) = (S(N), iN , {fN}).

The sign of a transition with respect to a portG ∈ G is a function λG : T → {!, ?, τ}
defined by λG(t) =! if t• ∩G 6= ∅, λG(t) =? if •t ∩G 6= ∅, and λG(t) = τ otherwise,

for all t ∈ T .

It is desired that from every reachable marking of a component, the component

should be able to reach its desired final marking. This property is expressed in the notion

of weak termination. Another basic sanity check for components is to check whether it

internally behaves correctly, i.e., ignoring the interface places, the component should be

6

able to always reach its final marking. As this property is closely related to soundness

of workflow nets [1], We call this property soundness.

Definition 2 (Weak termination and soundness). LetN be a component. It is weakly

terminating, if for each marking m ∈ R(N, iN), we have fN ∈ R(N,m). It is sound,

if the system defined by its skeleton is weakly terminating.

Notice that this definition does not require the final marking of a component to be

a deadlock. Instead, the final marking can be seen as a home marking, in which the

component is in rest.

Components communicate via their ports. To be able to compose two components

so that they are able to communicate, the components should have inverted ports: input

places of the one should be output places of the other, and vice versa.

Definition 3 (Composition of components). Two components A and B are compos-

able with respect to port G ∈ GA ∩ GB , denoted by A⊕G B, if and only if (PA ∪ IA ∪
OA ∪ TA) ∩ (PB ∪ IB ∪OB ∪ TB) = (IA ∩OB) ∪ (OA ∩ IB) = G.

If A and B are composable with respect to port G, their composition results in

a component A ⊕G B = (P, I,O, T, F,G, i, f) where P = PA ∪ PB ∪ H; I =
(IA∪IB)\H;O = (OA∪OB)\H; T = TA∪TB; F = FA∪FB; G = (GA∪GB)\H;

i = iA + iB; and f = fA + fB . If a port G ∈ GA ∩ GB exists such that A ⊕G B, we

write A⊕ B.

Consider again the components N and M of Fig. 2. Both components share port G,

where the input places a, c and d of M are output places of N , and the output places b

and d are input places of N . Their composition results in a component N ⊕M , where

the places a, b, c, d and e become internal places of the composition.

The composition operator is commutative and associative, provided that the com-

ponents are composable.

Corollary 4 (Composition is commutative and associative). LetA,B andC be three

components, such that A ∩ C = ∅, and let G ∈ GA ∩ GB and H ∈ GB ∩ GC . If A and

B are composable w.r.t some port G ∈ GA ∩ GB , then A ⊕G B = B ⊕G A; Also,

(A ⊕G B) ⊕H C exists iff A ⊕G (B ⊕H C) exists. If the compositions exist, they are

identical.

In the remainder of this section, we discuss some properties of the composition op-

erator. Composition only restricts behavior, i.e., the composition of two components A

and B does not introduce any new behavior. In [24], it is shown that the projection of

a composition to either one of its constituents is a simulation relation [10]. As a conse-

quence, a firing sequence in the composition of two components is a firing sequence of

its constituents, after hiding the transitions of the other component, and any reachable

marking in the composition results in a reachable marking of that constituent.

Corollary 5. Let A and B be two composable components with respect to some port

G ∈ GA ∩ GB . Define N = A ⊕G B. Let m,m′ ∈ R(S(N)) and σ ∈ T ∗
N such

that (S(N) : m
σ

−→ m′). Then m|PA
∈ R(S(A)) and m|PB

∈ R(S(B)), (S(A) :

m|PA

σ|TA−→ m′
|PA

), and (S(B) : m|PB

σ|TB−→ m′
|PB

)

7

v

t

u

B

A C

G H

Fig. 3. Composition of three components where both A ⊕G B and B ⊕H C are sound, but

A⊕G B ⊕H C is not.

4 A General Verification Framework

In this section we present a formal framework for compositional verification of sound-

ness on component trees. Proving the soundness of a component tree is done in two

steps. First of all, each component should be sound itself. Next, each connection is

checked against some communication condition, from which soundness of the compo-

sition, and of the whole tree can be concluded. Such a condition should satisfy some

criteria. A component may not notice the difference whether it is communicating with a

single component or with a component tree. We therefore search for a sequence relation

ϕ : T ∗
N ×T ∗

N → IB, which is a predicate on the firing sequences of component N , such

that this property is guaranteed.

As shown in [4], soundness is not a sufficient condition. Consider for example the

composition in Fig. 3. In this example, it is easy to verify that both compositions A⊕B

and B ⊕ C are sound. However, in the composition A ⊕ B ⊕ C, transition t is only

enabled once it received a message from componentA, which in turn requires a message

from component C. Consequently, the composition of the tree is not sound.

As soundness is not a sufficient condition, we need to strengthen the soundness

property by stating that for all reachable markings in the composition of B and C and

firing sequence σ in B, a firing sequence σ̃ should exist in the composition such that σ

and σ̃ satisfy the predicate ϕ.

Definition 6 (Communication condition). Let B and C be two components such that

B ⊕H C for some H ∈ GB ∩ GC . Define N = B ⊕H C and let ϕ : T ∗
B × T ∗

N → IB be

a sequence relation. The communication condition comϕ(B,C) holds if and only if:

∀m ∈ R(S(N), iN), σ ∈ T ∗
B :

(S(B) : m|PB

σ
−→ fB) =⇒ (∃σ̃ ∈ T ∗

N : (S(N) : m
σ̃

−→ fN) ∧ ϕ(σ, σ̃))

8

A B

G

t1

t2

t4

t3

u1

u2

u3 u4

u5

u6

iA iB

fA fB

a

b

c

d

p1 p2

q1

q2

q3

t1

t2

t4

t3

u1

u2

u5

u6

iA

fA

a

b

c

d

p1 p2

Fig. 4. Composition A⊕G B and its subnet N1 = CB(A)

In fact, the communication condition states that B ⊕ C is able to follow B. For any ϕ,

this condition implies soundness, which directly follows from Cor. 5.

Lemma 7 (ϕ-communication condition implies soundness). Let B and C be two

components that are composable with respect to portG ∈ GB \GC . Let ϕ be a sequence

relation. IfB is sound and comϕ(B,C) holds for some sequence relation ϕ, thenB⊕H
C is sound.

Condition comϕ is sufficient for deciding the soundness of two components. Let

A, B and C be three components such that A communicates with B, B communicates

with C, but A and C do not communicate, i.e., A and C are disjoint. We prove that if

the composition A ⊕ B is sound, and components B and C satisfy comϕ(B,C), then

the composition of A, B and C is sound. In order to provide a sufficient condition for

concluding soundness of a tree of three components, such a sequence relation needs to

satisfy several criteria. These criteria follow directly from the proof.

To prove soundness of the component tree, we need to show that given a reachable

marking of the component tree, the final marking should be reachable. As the composi-

tion ofA andB is sound, we have a firing sequence inA⊕B from this marking leading

to the final marking of A⊕ B. Condition comϕ(B,C) should guarantee that this firing

sequence projected on B is still possible in the component tree. The condition ensures

the existence of a firing sequence inB⊕C such that it satisfies the sequence relation ϕ.

Hence, we have a firing sequence inA⊕B and a firing sequence inB⊕C satisfying

the sequence relation ϕ. We should be able to interweave these firing sequences, so that

the resulting sequence is a firing sequence in the component tree. Therefore, we divide

the composition of A ⊕ B into two subnets, N1 and N2. The first subnet, N1, covers

component A and the transitions of B that communicate with A. Figure 4 depicts the

division of the composition A ⊕ B into N1. Net N2 is the skeleton of component B.

Note that the union of netsN1 andN2 is the skeleton of the composition. The transitions

of B that communicate with A are common for the two subnets, the places of N1 and

N2 are disjoint.

9

Definition 8. Let A and B be two components such that A and B are composable

with respect to some port G ∈ GA ∩ GB . Define N = A ⊕G B. The Petri net CB(A)
is defined as CB(A) = (P, T, F) where P = PA ∪ G, T = TA ∪ •

N G ∪ G•
N and

F = FN ∩ ((P × T) ∪ (T × P)).

Every firing sequence in A ⊕ B can be turned into a firing sequence of CB(A) by

leaving out all transitions of TB , except the transitions of B that communicate with A.

The proof follows directly from Cor. 5.

Corollary 9. Let A and B be two OPNs that are composable with respect to some

port G ∈ GA ∩ GB . Define N = A ⊕ B and L = CB(A). Then for all σ ∈ T ∗
N and

m,m′ ∈ INPN such that (S(N) : m
σ

−→ m′) holds (L : m|PL

σ|TL−→ m′
|PL

).

In the soundness proof, the firing sequence in A⊕ B is projected on CB(A), and it

will be interweaved with the resulting firing sequence of the communication condition.

The interweaving property will guarantee that this interweaving is possible.

Property 10 (Interweaving firing sequences). Let A and B be two components that are

composable with respect to some port G ∈ GA ∩ GB . Let ϕ be a sequence relation as

defined in Def. 6. Let N1 = CB(A) and N2 = S(B). Let µ ∈ T ∗
N1

and m,m′ ∈ INPN1

such that (N1 : m
µ

−→ m′). Let ν ∈ T ∗
N2

and m,m′ ∈ INPN2 such that (N2 : m
ν

−→

m′) and ϕ(µ, ν). Then a σ ∈ T ∗
N exists such that (S(N) : m + m

σ
−→ m′ + m′),

ϕ(µ, σ) and ϕ(ν, σ).

The interweaving property expresses that two sequences can be combined into a

single firing sequence that is executable and satisfies the sequence relation. Also, the

sequence relation should hold for a firing sequence, and its firing sequence in which

all transitions are hidden except for the transitions that communicate. Rephrased, the

sequence relation ϕ should not consider all transitions in B, but only the transitions of

B that communicate with A. This is expressed in the next property.

Property 11. Let B and C be two components that are composable, and let G ∈ GB \
GC . Define N = B ⊕ C and R = •

N G ∪G•
N . Let ϕ be a sequence relation as defined

in Def. 6. Let σ ∈ T ∗
B and σ̃ ∈ T ∗

N . If ϕ(σ, σ̃), then ϕ(σ|R, σ̃) and ϕ(σ, σ̃|R).

This leads to the main theorem, that the communication condition comϕ is a suf-

ficient condition for soundness. Note that to prove the main theorem for a specific se-

quence relation, we need to show that both properties hold for the sequence relation.

Theorem 12 (Communication condition sufficient for soundness). Let A, B and C

be three components such that A and B are composable with respect to port G ∈
GA ∩ GB , B and C are composable, A and C are disjoint and A⊕G B is sound. Let ϕ

be a sequence relation as defined in Def. 6.

If comϕ(B,C) holds, then A⊕G B ⊕H C is sound.

Proof. Define N = A ⊕G B ⊕H C, M = A ⊕G B, N2 = S(B ⊕H C) and N1 =
CB(A). Let m ∈ R(S(N)). Since M is sound, a σ ∈ T ∗

M exists such that (S(M) :

10

N1 N2

A B CR

Fig. 5. The composition A⊕ B ⊕ C is split into N1 = CB(A) and N2 = S(B ⊕ C)

m|PM

σ
−→ fM). By Cor. 5, the firing sequence σ|TB

is also a firing sequence in S(B),

i.e. (S(B) : m|PB

σ|TB−→ fB). By Cor. 5, m|PN2

∈ R(N2, iM). Hence, we can apply

the communication condition comϕ(B,C) onm|PN2

and σ|TB
, which results in a firing

sequence σ̃ ∈ T ∗
N2

such that (N2 : m|PN2

σ̃
−→ fN2

) and ϕ(σ|TB
, σ̃). Hence, we have a

firing sequence σ in M and a firing sequence σ̃ in N2, which we need to interweave.

We split the composition N in N1 and N2, as shown in Fig. 5. By Cor. 9, (N1 :

m|PN1

σ|TN1−→ fA). By Prop. 11, the sequence relation also holds for the projected firing

sequence, i.e. ϕ(σ|TN1

, σ̃) holds. Then the Interweaving Property (Prop. 10) applied on

(N1,m|PN1

) with firing sequence σ|TN1

and (N2,m|PN2

) with firing sequence σ̃ results

in a firing sequence σ ∈ T ∗
N such that (S(N) : m

σ
−→ fA + fN2

= fN). Hence, N is

sound. ⊓⊔

From Thm. 12, it follows that comϕ is a sufficient condition to conclude soundness

of a component tree consisting of three components if Prop. 10 and Prop. 11 hold for the

sequence relation. Hence, if two connected components satisfy comϕ, the composition

is guaranteed to be sound, and it can be used for compositional verification. In fact,

comϕ(A,B) implies a direction in the component tree: component A uses component

B to provide its service on port G, or, rephrased, B provides a service to A.

Definition 13 (Component uses another component). Let A and B be two compos-

able components with respect to port G ∈ GA ∩ GB , and let ϕ be a sequence relation

as defined in Def. 6.

We say A uses B, denoted by A©⊲ϕB, if A⊕G B and comϕ(A,B).

In this way, we can construct a component tree of components that uses other com-

ponents to deliver their service. A component tree is a tree of components connected

to each other such that components can only “subcontract” work to other components.

The structure of the tree is defined by the tree function c. Each node A is a component

that delivers a service to its parent c(A) using the services of its children c−1(A). Each

component only communicates with its parent and its children, communication with

other components is not allowed. Note that the communication implied by this function

11

is asymmetric: the parent uses its children to deliver the service requested. By requiring

that the transitive closure of c is irreflexive, we ensure the component tree to be a tree.

Definition 14 (component tree). A component tree is a pair (O, c) where O is a set of

components, and c : O ⇀ O is a partial function called the parent function such that

the transitive closure c∗ of c is irreflexive, for all A,B ∈ O:

– c(B) = A =⇒ |GA ∩ GB | = 1 ∧A©⊲ϕB; and

– A ∩B 6= ∅ =⇒ c(A) = B ∨ c(B) = A.

and for all A ∈ O a B ∈ O exists such that (A,B) ∈ c∗ or (B,A) ∈ c∗.

An example is shown in Fig. 1, where component A uses component B, which in

turns uses components C and D.

In a component tree, each parent should use the services of its children. Hence, if

the root is sound, and each parent uses its children, the component tree should be sound.

This is expressed in the next theorem. The proof uses the associativity and commuta-

tivity of the composition operator and Thm. 12.

Theorem 15 (Soundness of component trees). Let (O, c) be a component tree. If all

components of O are sound, then
⊕

X∈OX is sound.

Proof. Assume all components in O are sound. Observe that (O, c) is a tree. Hence, a

topological sort ⊑ exists on the nodes O. Let O = {O1, . . . , On} such that Oi ⊑ Oi+1

for 1 ≤ i < n. We prove the lemma by induction on i. Let i = 1. For ({O1}, ∅), the

statement holds trivially.

Now assume 1 < i < n and
⊕

X∈O′ X is sound where O′ = {O1, . . . , Oi}. Let

B = Oi+1. Since ⊑ is a topological sort, there exists a uniqueA ∈ O′ such thatA©⊲ϕB,

and B is disjoint with all OPNs in O′ \ {A}.

By associativity and commutativity, we have
⊕

X∈O′ X = (
⊕

X∈O′\{A}X)⊕ A,

and
⊕

X∈O′\{A}X is disjoint with B. As A©⊲ϕB, we have comϕ(A,B), and thus by

Thm. 12, (
⊕

X∈O′\{A}X)⊕ A⊕G B is sound. Again by associativity and commuta-

tivity, (
⊕

X∈O′\{A}X)⊕A⊕GB =
⊕

X∈O′∪{B}X . Hence, the statement holds. ⊓⊔

5 Elastic Communication

In this section, we present a communication condition that satisfies both Prop. 10 and

Prop. 11. Let A, B and C be three components such that A and B, and B and C are

both composable, and A and C are disjoint. In [4], it is shown that checking whether

the composition B⊕ C behaves as component B on the interface with A, i.e., identical

communication, is sufficient to prove soundness of a component tree. In fact, it is easy

to show that this condition satisfies Prop. 10 and Prop. 11 [24]. However, this identical

communication condition is very restrictive. One way to weaken the condition of [4]

is by allowing to permute port transitions within a communication block, i.e., a block

of only sending or receiving transitions, possibly interweaved with silent transitions.

Although this already weakens the condition, it remains very restrictive [24]. Consider

for example the composition of Fig. 6. It is clear that the composition A⊕GB is sound.

12

t1

t2

t4

t3

t5

a

b

c

u1

u2

u3

v1

v2

v3

iA

iB

iC

fC

fB
fA

A
B

C

G H

Fig. 6. Although net A⊕G B ⊕H C is sound, identical communication does not hold

Now, take the sequence σ = 〈t1, t2, t3, t4, t5〉. Although it is easy to verify that the

composition A ⊕ B ⊕ C is sound, no firing sequence can be found that behaves as σ,

even when swaps within the same communication block is allowed. The main problem

of the net is that the b message is sent too early for some of the sequences. This exam-

ple shows that messages may be sent earlier without violating the soundness property.

Soundness only requires that messages should be on time, i.e., components may send

messages earlier, as long as they can both terminate properly. We reflect this in the

elastic communication condition.

The condition allows sending transitions to be shuffled, as long as for each receiving

transition at least the same sending transitions occur, or rephrased, sending transitions

may occur at any position within its communication block, or it can be moved forward

in the firing sequence. Although transitions sending messages may be moved forward in

the firing sequence, the condition ensures that from every marking reachable, the final

marking is reachable.

Consider the composition A ⊕G B of two components A and B. In the proof of

Thm. 12, the composition is split into two nets, N1 = CB(A) and N2 = S(B), and

a firing sequence in N1 is interweaved with a firing sequence in N2. Let µ be a firing

sequence in N1 and ν a firing sequence in N2. To be able to interweave the two firing

sequences, ν has to produce the tokens it sends in time, and µ has to ensure that ν has

sufficient tokens to be able to produce these tokens. In netN1, all transitions ofB either

have an empty preset, or an empty postset. The set of transitions of B with an empty

preset is labeled Rout, the set of transitions of B with an empty postset is labeled Rin.

If in µ a transition of Rout fires, it means that a message from B is needed for A to

continue. On the other hand, firing a transition of Rin in ν indicates that B needs a

message from A.

To interweave sequences µ and ν into a firing sequence σ in the composition, if a

transition in Rin is the next transition of ν to be added to σ, then the transition should

13

already have fired in µ, since otherwise the transition cannot be enabled in the compo-

sition. Likewise, if a transition in Rout is the next transition of µ to be added to σ, then

the transition should already have fired in ν, since otherwise the transition cannot be

enabled in σ. If both conditions do not hold, we cannot create a firing sequence in the

composition. Hence, the following formula has to hold:

¬∃ 0 ≤ k < |µ|, 0 ≤ l < |ν| :
(−−−−−→µ[1..k+1]|Rout

> −−−→ν[1..l]|Rout

) ∧ (−−−−→ν[1..l+1]|Rin

> −−−→µ[1..k]|Rin

)

If such a pair k, l would exist, we cannot interweave the firing sequences: we cannot

add the next transition of µ, since it needs tokens of ν that are not yet generated, and

we cannot add the next transition of ν, since that transition needs tokens of µ that are

not yet generated. If such a pair does not exist, we say the sequences are elastic to each

other.

Definition 16 (Elastic sequences). Let N = (P, T, F) be a Petri net and G ⊆ P .

Define Rin = {t ∈ T | λG(t) =?} and Rout = {t ∈ T | λG(t) =!}. Let µ, ν ∈ T ∗
N .

Sequence µ is elastic to sequence ν, denoted by µ֌G ν if and only if: (−−−−−→µ[1..k+1]|Rout

≤
−−−→ν[1..l]|Rout

) ∨ (−−−−→ν[1..l+1]|Rin

≤ −−−→µ[1..k]|Rin

)for all 0 ≤ k < |µ| and 0 ≤ l < |ν|

Consider again Fig. 6. As an example, take the firing sequences σ = 〈t1, t2, t3, t4, t5〉
and σ̃ = 〈t1, u1, t2, t4, u2, u3, t3, t5〉. In σ̃, the firing of transition t3 is moved forward

with respect to σ, i.e., sending message b is “delayed” in σ. Since σ[1..0] = ǫ for each

firing sequence σ, we have by definition σ[1..0] ֌G σ̃[1..0]. The index of σ̃ may be

increased up to the situation that σ[1..0] ֌G σ̃[1..6], since then t3 needs to be fired in

σ[1..0] = ǫ, which is obviously not the case. Hence, we need to increase the index of

σ, which is allowed up to σ[1..5] ֌G σ̃[1..6]. Then, it is allowed to increase the index

of σ̃ up to σ[1..5] ֌G σ̃[1..8]. Hence, σ is elastic to σ̃. The sequences not only should

be elastic, but also the number of messages sent and received by both sequences should

match. These two requirements form the elastic sequence relation.

Definition 17 (Elastic communication condition). Let B and C be two components

that are composable with respect to port G ∈ GB \ GC . Let µ ∈ T ∗
B and ν ∈ T ∗

B⊕HC
.

We define the elastic sequence relation ψG : T ∗
B × T ∗

B⊕HC
→ IB by ψG(µ, ν) if and

only if −→µ |R = −→ν |R and µ|R ֌G ν, where R = {t ∈ TB | λG(t) 6= τ}. The elastic

communication condition is defined as comψG
(B,C).

In order to show that the elastic communication condition comψ is a sufficient con-

dition, we need to show that Prop. 10 and Prop. 11 hold for the elastic sequence relation.

The latter follows directly from the definition of the elastic sequence relation.

Corollary 18. Let A and B be two components that are composable with respect to

port G ∈ GB \ GC . Define N = A ⊕ B. Let µ ∈ T ∗
B and ν ∈ T ∗

N such that ψG(µ, ν).
Define R = •

N G ∪G•
N . Then ψG(µ|R, ν) and ψG(µ, ν|R).

To combine a firing sequence µ with a firing sequence ν it is elastic to, we need to

consider the elasticity, i.e., the structure of the sequences. Hence, to prove Prop. 10 for

14

Procedure IsElasticTo(µ,ν)

(k, l, σ) :=(0, 0, ǫ);
{Inv: µ[1..k] ֌G ν[1..l] ∧ µ[1..k] ֌G σ ∧ ν[1..l] ֌G σ }
while (k < |µ| ∨ l < |ν|) do

if k < |µ| ∧ −−−−−→µ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

then

if µ(k + 1) 6∈ (Rin ∪Rout) then
σ := σ; 〈µ(k + 1)〉;

fi

k := k + 1;
� l < |ν| ∧ −−−−→ν[1..l+1]|Rin

≤ −−−→µ[1..k]|Rin

then

(σ, l) :=(σ; 〈ν(l + 1)〉, l + 1);
else

return ǫ;

fi

od

return σ

ψ, we need to show that we can interweave firing sequences µ and ν. If −−−−−→µ[1..k+1]|Rout

≤
−−−→ν[1..l]|Rout

, we concatenate σ and 〈µ(k + 1)〉 if µ(k + 1) is not in Rin or Rout, and if
−−−−→ν[1..l+1]|Rin

≤ −−−→µ[1..k]|Rin

, we concatenate σ and 〈ν(l + 1)〉. Since µ is elastic to ν,

always at least one of the two cases holds for each k < |µ| and l < |ν|. This operation

results in the algorithm IsElasticTo. In the algorithm, the If-�-Fi construction indi-

cates that if multiple guards are true, non-deterministically one of the guards evaluating

true is chosen.

In this algorithm, if both conditions of the if clauses fail, sequence µ cannot be

elastic to sequence ν, and hence, the algorithm fails. Otherwise, an interweaved firing

sequence σ is returned, such that both µ֌G σ and ν ֌G σ.

Corollary 19. Let N be a component and let G ∈ GN . Let µ, ν ∈ T ∗
N . Then an invari-

ant for procedure isElasticTo(µ,ν) is

µ[1..k] ֌G ν[1..l] ∧ µ[1..k] ֌G σ ∧ ν[1..l] ֌G σ

Next, we need to show that the firing sequence constructed via IsElasticTo

is executable. Given two OPNs A and B that are composable with respect to port G,

we split the composition into N1 = CB(A) and N2 = S(B). Every marking in the

composition can be split into a marking in S(A), S(B) and some tokens in the interface

places G. The marking in the interfaceG can again be split into places that are input for

B, which we name x, and places that are output for B, which we name y. As shown in

the next lemma, the elastic communication condition ensures that at each point in time,

there are sufficient tokens in the interface places to continue.

Lemma 20. Let A and B be two components such that they are composable with re-

spect to some port G ∈ GA ∩ GB . Define GI = G ∩ IB , GO = G ∩OB , N1 = CB(A),
N2 = S(B) and N = N1 ∪N2. Let m0 ∈ INPN1 be a marking, and let µ ∈ T ∗

N1
be a

firing sequence of length k such that for all 1 ≤ i ≤ |µ|, markings mi−1,mi ∈ INPN1

15

exist with (N1 : mi−1
µ(i)
−→ mi). Let m0 ∈ INPB be a marking, and let ν ∈ T ∗

B

be a firing sequence of length l such that µ ֌G ν and for all 1 ≤ i ≤ |ν|, mark-

ings mi−1,mi ∈ INPN2 exist with (N2 : mi−1
ν(i)
−→ mi). Then, a firing sequence

σ ∈ T ∗
N and a marking m ∈ INPN exist such that: (1) σ = IsElasticTo(µ, ν); (2)

σ|TA
= µ|TA

and σ|TB
= ν|TB

; (3) (N : m0 +m0
σ

−→ m); and (4) mk|PA
≤ m, and

ml ≤ m.

Proof. Define Rin = {t ∈ TB | λG(t) =?}, Rout = {t ∈ TB | λG(t) =!} and

R = Rin ∪Rout. Note that R = TN1
\ TN2

.

We prove the lemma by induction on the structure of µ֌G ν. The statement holds

trivially for σ = ǫ and m = m0 +m0.

Suppose the statement holds for some µ′ ≤ µ and ν′ ≤ ν such that µ′
֌G ν′,

i.e. let k = |µ′| and l = |ν′|, then for µ′ and ν′ a firing sequence σ′ ∈ T ∗
N and

marking m′ ∈ INPN exist such that σ′ = IsElasticTo(µ′, ν′), σ′
|TA

= µ′
|TA

and

σ′
|TB

= ν′|TB
(N : m0 +m0

σ′

−→ m′) and mk ≤ m′, and ml ≤ m′.

By the structure of ֌G, two cases need to be considered: k < |µ| and
−−−−−→µ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout

or (2) l < |ν| and −−−−→ν[1..l+1]|Rin

≤ −−−→µ[1..k]|Rin

.

First suppose k < |µ| and −−−−−→µ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout

. Let t = µ(k + 1). If t ∈ R,

then t ∈ TB . Hence, firing transition t does not change the internal marking of A, i.e.

mk|PA
= mk+1|PA

. Choose σ = σ′ and m = m′. Then clearly the statement holds.

Otherwise, t 6∈ R. There are two cases to consider: either (a) •
N t ∩ G = ∅ or (b)

•
N t ∩ G 6= ∅. If (a) •

N t ∩ G = ∅, then •
N t ≤ mk|PA

≤ m′. Let σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t
−→ m). Hence, σ and m have the desired property.

Next, suppose (b) •
N t ∩ G 6= ∅. Then, transition t needs input from some places in

the interface G. Since t 6∈ R, we have −−−→µ[1..k]|Rout

= −−−−−→µ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout

=
−→
σ′

|Rout
. Let p ∈ •

N t ∩ G be an interface place in the preset of transition t. Since

transition t is enabled in (N,mk), we have mk(p) > 0. By the marking equation,

mk(p) = m0(p) +
∑
u∈•p

−−−→µ[1..k](u) −
∑
u∈p•

−−−→µ[1..k](u). As place p is an interface

place, mk(p) ≤ m′(p). Thus, transition t is enabled in (N,m′). Let σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t
−→ m).

Suppose (2) l < |ν| and −−−−→ν[1..l+1]|Rin

≤ −−−→µ[1..k]|Rin

. Let t = ν(l+1). If •
N t∩G = ∅,

then •
N t ≤ ml. Hence, the statement holds for σ = σ′; 〈t〉 and m ∈ INPN such that

(N : m′ t
−→ m).

Otherwise, •
N t∩G 6= ∅. Then λG(t) =? and transition t needs input fromA in order

to be enabled in N . Hence, t ∈ Rin and ν[1..l]|Rin

(t) < µ[1..k]|Rin

(t). Let p ∈ •
N t ∩G

be an interface place in the preset of t. Consequently, mk(p) < m′(p), and transition t

is enabled in (N,m′). Let σ = σ′; 〈t〉 and m ∈ INPN such that (N : m′ t
−→ m). ⊓⊔

Lm. 20 shows that a firing sequence and a firing sequence it is elastic to may be

interweaved into a new firing sequence that is elastic to both sequences. As in elastic

communication the number of occurrences of each communicating transition should be

equal, we may directly conclude that Prop. 10 holds for the elastic sequence relation ψ.

16

B

A

C

a

b

c

d

iA iC

iA

fA fB

fC

Fig. 7. Although net A⊕G B ⊕H C is sound, condition ΨG(B,C) does not hold.

Corollary 21 (Harlem shuffle). Let A and B be two OPNs that are composable with

respect to port G ∈ GA ∩ GB . Let N1 = CB(A) and N2 = S(B). Let µ ∈ T ∗
N1

and

m,m′ ∈ INPN1 such that (N1 : m
µ

−→ m′). Let ν ∈ T ∗
N2

and m,m′ ∈ INPN2 such

that (N2 : m
ν

−→ m′) and ψG(µ, ν). Then, there exists σ ∈ T ∗
N such that (S(N) :

m+m
σ

−→ m′ +m′), ψG(µ, σ) and ψG(ν, σ).

From Cor. 18 and Cor. 21 we can directly conclude that Condition comψ is a suffi-

cient condition for compositional verification.

Theorem 22 (Elastic communication condition sufficient for soundness). Let A, B

and C be three OPNs such that A and B are composable with respect to G ∈ GA ∩GB ,

B and C are composable, A and C are disjoint and A⊕GB is sound. If comψG
(B,C)

holds, then A⊕G B ⊕H C is sound.

The framework does not provide a necessary condition. As shown in Fig. 7, also the

elastic communication condition is not necessary. In this example, component A either

receives an a or a b from component B. In the composition B ⊕H C, component C

decides which message will be sent by component B. Consider the marking [iB , d, fC]
of the composition B ⊕ C. In this marking, the composition can only decide to send

message b, whereas if we project this marking on B, i.e. we consider only the marking

[iB], also message a could be sent. Hence, the condition does not hold for the example.

6 Conclusions

In this paper, we considered a sub class of dynamic networks of asynchronously co-

municating systems. We presented a framework for compositional verification of such

systems based on communication conditions.

The elastic communication condition is an example of using this framework. Given

two sequences, the elastic communication condition allows transitions that send mes-

sages to occur occur earlier in the firing sequence, as long as it is produced before

17

the token needs to be consumed. A simple algorithm exists to decide whether a fir-

ing sequence is elastic to another firing sequence, and if so, the algorithm returns an

interweaved firing sequence of the two.

Related Work In [7] the authors give a constructive method preserving the inheritance

of behavior. As shown in [2] this can be used to guarantee the correctness of interorga-

nizational processes. Other formalisms, like I/O automata [14] or interface automata [6]

use synchronous communication, whereas we focus on asynchronous communication.

In [23], the author introduces place composition to model asynchronous communi-

cation focusing on the question which subnets can be exchanged such that the behavior

of the whole net is preserved. In [13] the authors focus on deciding controllability of

an OPN and computing its operating guidelines. Operating guidelines can be used to

decide substitutability of services [21], or to prove that an implementation of a service

meets its specification [5].

In [8], the authors propose to model choreographies using Interaction Petri nets.

Similarly the authors of [11] propose a method to verify whether services agree to a

choreography specification. However, in these approaches the whole network should be

known at design-time.

In [9], the authors introduce an abstract component and interface algebra based

on logic, where consistency is based on the composition of, possibly infinite, sets of

traces of both the connections and the services. Although closely related, the approach

presented in this paper focuses more on the process aspects of component-based design.

Future Work Although we have shown that the elastic communication condition

is sufficient, decidability of the condition remains future work. The proposed frame-

work shows that post-design verification is a challenging task. As, in limitations one

first shows oneself the master, we search for similar approaches as presented in [12]

that guarantees the presented conditions during the construction of a network of asyn-

chronously communication systems.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In Application and Theory of Petri

Nets 1997, volume 1248 of LNCS, pages 407 – 426. Springer, Berlin, 1997.

2. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to agree to dis-

agree without loosing control? Information Technology and Management Journal, 4(4):345–

389, 2003.

3. W.M.P. van der Aalst, M. Beisiegel, K.M. van Hee, D. König, and C. Stahl. An SOA-

Based Architecture Framework. International Journal of Business Process Integration and

Management, 2(2):91–101, 2007.

4. W.M.P. van der Aalst, K.M. van Hee, P. Massuthe, N. Sidorova, and J.M.E.M. van der Werf.

Compositional Service Trees. In Applications and Theory of Petri Nets 2009, volume 5606

of LNCS, pages 283 – 302. Springer, Berlin, 2009.

5. W.M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multiparty Con-

tracts: Agreeing and Implementing Interorganizational Processes. The Computer Journal,

53(1):90–106, 2010.

18

6. L. de Alfaro and Th. A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes,

26(5):109–120, 2001.

7. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic

Programming, 47(2):47–145, 2001.

8. G. Decker and M. Weske. Local Enforceability in Interaction Petri Nets. In Business Process

Management, volume 4714 of LNCS, pages 305–319. Springer, Berlin, 2007.

9. J.L. Fiadeiro and A. Lopes. An interface theory for service-oriented design. Theoretical

computer science, 503:1–30, 2013.

10. R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II: The Semantics of

Sequential Systems with Silent Moves. In Proceedings of CONCUR 1993, volume 715 of

LNCS, pages 66–81. Springer, Berlin, 1993.

11. G. Gössler and G. Salaün. Realizability of Choreographies for Services Interacting Asyn-

chronously. In Formal Aspects of Component Software, volume 7253 of LNCS, pages 151–

167. Springer, Berlin, 2012.

12. K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf. Construction of Asynchronous

Communicating Systems: Weak Termination Guaranteed! In Software Composition, volume

6144 of LNCS, pages 106 – 121. Springer, Berlin, 2010.

13. N. Lohmann, P. Massuthe, and K. Wolf. Operating Guidelines for Finite-State Services. In

Petri Nets and Other Models of Concurrency ICATPN 2007, volume 4546 of LNCS, pages

321–341. Springer, Berlin, 2007.

14. N.A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In 6th

Annual ACM Symposium on Principles of Distributed Computing, 1987.

15. P. Massuthe. Operating Guidelines for Services. PhD thesis, Technische Universiteit Eind-

hoven, 2009.

16. P. Massuthe, A. Serebrenik, N. Sidorova, and K. Wolf. Can I find a partner? Undecidability

of partner existence for open nets. Information Processing Letters, 108(6):374 – 378, 2008.

17. M.D. McIlroy. Mass produced software components. In P. Naur and B. Randell, editors, Pro-

ceedings of NATA Software Engineering Conference, volume 1, pages 138–150. Garmisch

Germany, 1968.

18. M.P. Papazoglou. Web Services: Principles and Technology. Pearson - Prentice Hall, 2007.

19. W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical Computer

Science: An EATCS Series. Springer, Berlin, 1985.

20. C. Stahl. Service Substitution. PhD thesis, Technische Universiteit Eindhoven, 2009.

21. C. Stahl, P. Massuthe, and J. Bretschneider. Deciding Substitutability of Services with Oper-

ating Guidelines. In Transactions on Petri Nets and Other Models of Concurrency II, volume

5460 of LNCS, pages 172–191. Springer, Berlin, 2009.

22. C. Szyperski. Component Software – beyond Object-Oriented Programming. Addison-

Wesley and ACM Press, 1998.

23. W. Vogler. Asynchronous communication of petri nets and the refinement of transitions. In

Automata, Languages and Programming, volume 623 of LNCS, pages 605 – 616. Springer,

Berlin, 1992.

24. J.M.E.M. van der Werf. Compositional Design and Verification of Component-based Infor-

mation Systems. PhD thesis, Technische Universiteit Eindhoven, 2011.

25. K. Wolf. Does My Service Have Partners? In Transactions on Petri Nets and Other Models

of Concurrency II, LNCS, pages 152 – 171. Springer, Berlin, 2009.

26. K. Wolf, C. Stahl, D. Weinberg, J. Ott, and R. Danitz. Guaranteeing weak termination in

service discovery. Fundamenta Informatica, 108(1-2):151–180, 2011.

