
Facilitating Collaborative Decision Making
With the Software Architecture Video Wall

Jan Martijn E. M. van der Werf, Rico de Feijter, Floris Bex, and Sjaak Brinkkemper
Department of Information and Computing Sciences

Utrecht University
{j.m.e.m.vanderwerf, r.defeijter, f.j.bex, s.brinkkemper}@uu.nl

Abstract—Although capturing and documenting the design
making process in software architecture is an important task,
few tools exist to support the architect in this task. Often, such
decisions are made during discussions with other stakeholders,
but typically these remain implicit.

We envision the Software Architecture Video Wall as a collabo-
rative decision making tool for the software architect. The video
wall serves as a whiteboard for discussions that automatically
records the screenplay. Combined with the audio recordings
of the discussion participants, a rich data set is obtained that
may serve as input to track design decisions, and argumentation
mining, to generate architecture rationale documentation. The
video wall serves different uses as explained in several possible
scenarios. However, as shown in the paper, much research is still
required to realize this vision.

I. INTRODUCTION

One of the main tasks of the software architect is to design
the system and to develop a project strategy [1]. By making
architectural design decisions, the architect constructs a soft-
ware architecture. Typically, organisations do not have a single
architect who makes all principle design decisions [1]. Instead,
the architect closely collaborates with other stakeholders, such
as software product managers, requirements engineers and
software developers [2].

A recent development in software architecture is the ad-
vent of systems of systems: more systems are connected to
jointly deliver their functionality. For example, dozens of
small organizations deliver together the software of a single
car [3]. In the business administration domain, similar trends
can be observed, such as the Dutch health care system between
health providers, municipalities and the central administration.
Not communicating all principle decisions to all collaborating
organizations, may seriously impact the system’s functionality
and characteristics. Consequently, both the documentation and
communication of design decisions throughout the software
development process becomes critical.

The twin peaks model [4], and its extension to software
construction [5] (Figure 1) visualizes the collaboration be-
tween the different stakeholders during software development.
The collaboration between architect, requirement engineers
and software product managers result in more detailed re-
quirements and architecture. Similarly, the actual construction
of the software system results in changes in the architecture,
and consecutively may influence the requirements. In the
whole process, architects mainly use discussion models [2] to

communicate with the different stakeholders. Such models are
typically informal drawings on a whiteboard with some lines
and boxes, and collaboratively altered during the discussion
with the stakeholders around the whiteboard. The end result
may stay for a while on the whiteboard, being photographed
and filed somewhere, or not being documented at all [2].

In the past decades, many approaches have been suggested
to support design reasoning in design. For example, issue-
driven design methods such as gIBIS and QOC have been
proposed to guide designers to focus on design issues and
criteria to judge design decisions [6]. Much of this research
focuses on providing software tools that can be used to make
the issues, options and arguments uttered during the design
phase explicit. One of the problems of these approaches is the
cognitive overload that results from having to learn and use
such tools at the same time as having to discuss and think
about complex software designs.

During design sessions, many different design decisions are
taken. However, most of these decisions are left implicit [7].
In research, different approaches have been developed to make
such decisions expicit. For example, [8] adds an observer
to the architecting team who in regular intervals intervenes
the discussion by prompting rationale questions, to trigger
reflection. Another approach has been to use a card game
during the design discussion [9]. Although these approaches
result in better design reasoning [10], documenting these in
Architecture Documentation remains an open problem.

As observed in earlier work [2], many discussions are
centred around a whiteboard. In this paper, we envision an
approach that intertwines design rationale with the actual

Level
of
Detail

Implementation dependence

General

Detailed
Independent Dependent

Specification Design

Requirements Architecture Construction

Fig. 1. Three peaks model: collaboration between the different roles in
software development [5].



Fig. 2. The video wall: a large multi-touch screen that serves as a whiteboard for discussions, capturing the screen play during the discussion sessions.

design by capturing these discussions at the whiteboard and
analyzing these automatically based on e.g. text and argumen-
tation mining. In Section II, we elaborate on our vision. Next,
Section III present several scenarios on how practitioners could
use the approach. Section IV concludes with an outlook to
further research required to materialize our vision.

II. ARCHITECTURE DECISION SUPPORT

Models are frequently used to discuss different options
among stakeholders. A typical discussion session goes as fol-
lows. One of the participants stands in front of the whiteboard
and sketches the model as he or she thinks the option should
look like. The other participants in the discussion watch how
the sketch is created, and start analyzing and discussing the
option. During the discussion, others might stand up, and
change the sketch, based on the ongoing discussion. After
several rounds, the participants agree on the sketch models,
and the session is closed. Sometimes, one of the participants,
typically the architect, makes a photo and files it, and that is all
that is documented. In a next meeting, the process starts again
from the beginning, typically not using the photograph of the
earlier created models, thus one of the participants redraws the
sketch, and the discussion starts all over. As not all participants
might be aware of the how and why of the current model, the
discussion starts all over, not touching the actual topics that
should be discussed.

Such scenarios are not uncommon in software producing
organizations [2]. This is why we envision the Software Ar-
chitecture Video Wall that supports capturing and documenting
design sessions.

A. The Software Architecture Video Wall

The Software Architecture Video Wall, (see Figure 2) is
a large multi-touch screen that essentially serves as a large
whiteboard. The wall is split into two panes: a side bar

with the discussion models as small thumbnails, and a main
canvas. During the discussion, an empty canvas can be used
to create a new discussion model, which can be stored and
versioned by the participants. Additionally, a thumbnail of a
discussion model on the side bar can be swiped into the current
canvas, and serve as a basis for discussion. In this way, the
canvas serves as an ordinary whiteboard during the discussion:
elements can be drawn, coloured, highlighted, or text can be
written on it.

Typically, a discussion requires several models, e.g. dis-
cussing whether to create a desktop application or to use a
client-server pattern involves not only a functional viewpoint
[5], but also the deployment viewpoint needs to be considered,
to decide which functionality goes where.

Such inter-view relations and discussions are essential to
capture principle design decisions. In this way, the video
wall enables the discussion on consequences in different
views by visualizing different discussion models at the same
time, and allows the participants to make traceability explicit,
which again improves the reasoning and documentation of the
software architecture.

B. Documenting Design Sessions

A simple way to record a discourse session is by capturing
the discussion itself, e.g. by equipping each participant with
an audio recording device. In the transcripts of the card game
research [9], one typically finds remarks like “I do not agree
with this element”, while the participant is pointing at the
whiteboard. Unfortunately, audio recordings do not capture
what the participant is pointing at. By capturing the video wall
interaction during these discussions as well, one can analyze
not only what has been said, but also what was visible on the
wall, how it was altered during that discussion, and by whom.

Ideally, the combined video and audio recordings are an-
alyzed automatically using text and argumentation mining



tools [11], to automatically extract architecture documentation
containing the essential drawings from the whiteboard, the
traceability relations as discussed, the main rationale, and
which decisions have been made. In this way, the participants
can look back on why certain models have been created, or
novice designers can use the recordings to study the design
discourse of the particular models.

III. POSSIBLE USES

One of the main advantages of the Software Architecture
Video Wall is that models and discussions can be captured at
any moment in time, similar to the use of the whiteboard in
current practices. In this section, we sketch several possible
uses of the Video Wall. First we sketch a scenario of a
classical group meeting between a software architect and a
software product manager. As a second scenario, which sketch
an informal discussion at the coffee corner. Last, we show how
the video wall can support the architect in capturing rationale
with more advanced analyses, e.g. when running simulations.

A. Capturing a Group Meeting: Documenting decisions

A first scenario is the classical group discussion in a
meeting. Consider a software product manager (SPM) and
a software architect (SA) that together want to discuss the
features to be added for the next release. The SPM has a set
of new user stories that need to be integrated into the new
release, and shows the list of user stories on the wall. The SA
swipes in a functional view, and starts dividing the stories over
the different model elements (see Figure 2). In this way, the
SA starts to create a traceability relation between the stories
and the functional view. There is a choice for story U : it could
be mapped both on functional element A as well as B. The SA
maps it to B and explains why (R1). The SPM disagrees and
proposes to map story U to functional element A, and gives
another argument (R2). As a next step, the architect swipes a
technical view that realizes A and B. Based on the traceability
relations between the functional and technical view (R3), the
SPM and SA agree to map story U to functional element B.

U connects to A U connects to B

R3R1 R2

Decision: U connects 
to B

Fig. 3. Decision Model including reasons for and against design options,
including the screen capture of the different arguments.

Fig. 4. A developer explains an informal model to the software architect,
who enjoys a cup of coffee.

In the end, the video wall analyzes the audio and video
recordings. Based on the analysis, it documents the final
decision: from the choice of the two options to link U to either
A or B, there was argument R1 by the SA that supported the
former option, whereas arguments R2 of the SPM and R3 of
the SA supported the latter option, resulting in the decision
tree as shown in Figure 3.

B. At the Coffee Corner: Collecting Design Options

Many discussions take place in an informal setting, such as
at the coffee corner. In many organisations, the coffee corner is
a perfect place where many employees meet unexpectedly and
informally discuss work related matters [12]. While drinking a
cup of coffee with colleagues, ideas might pop up, or technical
issues one is facing at the moment are discussed. Thus, the
coffee corner is an ideal place to collect different design
options. For example, a developer could illustrate his idea to
the software architect, by creating a new view (Figure 4), or
by adapting an existing view. The wall stores the adapted view,
and tags it as a design option, so that the architect can study
the option once he is back at his desk.

In addition, a part of capturing collaborative decision mak-
ing could also encompass an audio recording mechanism,
which allows the discussion to be recorded for later reference.
For instance, the data recorded during one of the informal
conversations that took place at a coffee corner could be
requested later on to support decision making in a formal
group meeting.

C. In Depth Analysis

The video wall should not only assist in building soft-
ware architecture documentation. Assessing an architecture to
validate software quality attribute satisfaction is an equally
important task. For example, based on the workload of the
actual system (measured from software operation data [13]),



Fig. 5. Adapting the performance characteristics of a queuing model con-
nected to a functional architecture model.

bottlenecks can be highlighted in the architecture, or a new de-
ployment can be suggested based on analyzing the architecture
and the system workload [13]. This results in new views, that
are added to the wall. The architect can then visually inspect
the suggestions, to accept or reject the changes.

Another example is depicted in Figure 5. In this exam-
ple, a software architect and a developer jointly model a
queueing network based on a Functional Architecture Model
(FAM) [14]. Together they set the parameters and check the
traceability. The outcomes of the queuing network analysis
might affect the other, connected, views. It is thus important
to also capture the actions carried out in the simulation (e.g.
setting the parameters etc.), apart from the discussion between
the two software architects that follows from the output of the
simulation, in order to know what actions from the simulation
led to the adoption of the contents of the FAM.

IV. OUTLOOK

Although capturing and documenting the design making
process in software architecture is an important task, few tools
exist to support the architect in this task. In this paper, we
presented our vision to capture collaborative decision making
through the Software Architecture Video Wall. The video wall
captures the models created during discussion sessions, and
records the process of how these models were established.
Capturing the discussion directly supports the architect in
many ways. For example, if the architecture needs to be
altered, the recordings can be replayed to recall the rationale
of the current model, or new architects can study the replay
to understand the current situation.

Future research to realize this vision requires many steps.
For example, text and argumentation mining on the data
collected by the video wall, i.e., analyzing both the screenplay
and the audio recordings of the different participants, is not yet
capable of extracting a decision model as depicted in Figure 3.
Although capturing the screenplay helps in annotating and un-
derstanding the audio recordings, further research is required
to be able to analyze the screenplay of a design session.

One way to guide argumentation mining would be to create
an interactive version of the card game [9]. By giving each

architect a device with the card game installed, the playing of
a card can be connected to the current screenplay. Both the
screenplay and the audio files are automatically annotated with
the card play, which serves as extra input for argumentation
mining techniques.

Another direction would be to add artificial intelligence –
or more specifically, modules for computational argumentation
[15] – to the video wall, that automatically plays the role
of the critical observer (cf. [8]): if the system cannot create
a decision tree, or misses options or arguments, the system
can automatically pose reflective questions in the discussion
to ensure that all decisions have a proper rationale.

We strongly believe that advances in this direction will
be a corner stone for continuous architecture: the architect
creates models, while the video wall keeps the architecture
documentation, including its rationale, up-to-date.

REFERENCES

[1] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, 2010.

[2] G. Lucassen, J. M. E. M. van der Werf, and S. Brinkkemper, “Align-
ment of software product management and software architecture with
discussion models,” in 8th IEEE International Workshop on Software
Product Management, IWSPM 2014, Karlskrona, Sweden, August 26,
2014. IEEE Computer Society, 2014, pp. 21–30.

[3] B. Boss, C. Tischer, S. Krishnan, A. Nutakki, and V. Gopinath, “Setting
up architectural sw health builds in a new product line generation,”
in 10th European Conference on Software Architecture Workshops, ser.
ECSAW ’16. ACM, 2016, pp. 16:1–16:7.

[4] J. Cleland-Huang, R. S. Hanmer, S. Supakkul, and M. Mirakhorli, “The
twin peaks of requirements and architecture,” IEEE Software, vol. 30,
no. 2, pp. 24–29, 2013.

[5] N. Rozanski and E. Woods, Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives. Addison-Wesley,
2011.

[6] S. J. B. Shum, A. M. Selvin, M. Sierhuis, J. Conklin, C. B. Haley, and
B. Nuseibeh, “Hypermedia support for argumentation-based rationale:
15 years on from gibis and qoc,” in Rationale Management in Software
Engineering. Springer, 2006, pp. 111–132.

[7] P. Lago and H. Vliet, “Explicit assumptions enrich architectural models,”
in 27th International Conference on Software Engineering, 2005. ICSE
05. ACM, 2005, pp. 206–214.

[8] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: How
reflections influence software design thinking,” J. Softw. Evol. Process,
vol. 6, pp. 394–426, 2016.

[9] C. Schriek, J. M. E. M. van der Werf, A. Tang, and F. Bex, “Software
architecture design reasoning: A card game to help novice designers,”
in 10th European Conference on Software Architecture, ECSA 2016, ser.
LNCS, vol. 9839. Springer, 2016, pp. 22–38.

[10] A. Tang, M. Tran, J. Han, and H. Vliet, “Design reasoning improves
software design quality,” in Quality of Software Architectures, ser.
LNCS, vol. 5581. Springer, 2008, pp. 28–42.

[11] M. Lippi and P. Torroni, “Argument mining: A machine learning
perspective,” in International Workshop on Theorie and Applications
of Formal Argumentation. Springer, 2015, pp. 163–176.

[12] Y. Taminiau, W. Smit, and A. de Lange, “Innovation in manage-
ment consulting firms through informal knowledge sharing,” Journal
of Knowledge Management, vol. 13, no. 1, pp. 42–55, 2009.

[13] S. Klock, J. M. E. M. van der Werf, J. P. Guelen, and S. Jansen,
“Workload-based clustering of coherent feature sets in microservice
architectures,” in International Conference on Software Architecture.
IEEE, 2017, accepted.

[14] S. Brinkkemper and S. Pachidi, “Functional architecture modeling for
the software product industry,” in ECSA 2010, ser. LNCS, vol. 6285.
Springer, 2010, pp. 198 – 213.

[15] M. Van Zee, F. Bex, and S. Ghanavati, “Rationalization of goal models
in grl using formal argumentation,” in 23rd International Requirements
Engineering Conference (RE). IEEE, 2015, pp. 220–225.


