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Abstract. The functional architecture focuses on decomposing func-
tionality into modules that offer certain features. These features require
interactions in order to complete their functionality. However, functional
architectures typically only focus on the static aspects of the system
design. Additional modeling techniques, such as like message sequence
charts are often used in the early phases of software design to indicate
how the software should behave.

In this paper we investigate the use of process discovery techniques to
discover from these scenarios the internal behavior of individual compo-
nents. Based on event logs, this paper presents an approach (1) to derive
the information flows between features, (2) identify the internal behav-
ior of features, and (3) to discover the order between features within a
module. The approach results in a sound workflow model for each mod-
ule. We illustrate the approach using a running example of a payment
system.

1 Introduction

One of the principle tasks of a software architect is to design a software sys-
tem [14], i.e., to organize the software elements the system is composed of in
sets of structures, to allow reasoning about the system [4]. An important as-
pect of the software architecture is the functionality it offers. To decompose and
specify the functionality of software, the authors of [6] introduced the Functional
Architecture Model (FAM). It separates the functionality into features that are
offered by the different modules the system is decomposed into. The informal
notation of the model makes it a valuable discussion model between the peo-
ple that define the functionality the software needs to offer, and the software
architect [11].

Features interact with other features via information flows to offer their func-
tionality. However, FAM only offers a static view on this interaction, i.e., the
information flow only shows possible interactions, but imposes no order on or
dependencies between these flows. Thus, to show how functionality is offered
by the system, the architect requires additional models. One way is to define



scenarios on top of the models, in which the architect can specify which fea-
tures interact in which order. These scenario then result in event logs, that can
be analyzed using process mining techniques [3]. Another source for discovering
the possible interactions between features is the use of system execution data [],
mapping events to the (partial) execution of features.

In this paper, we investigate the possibility to discover, given a set of scenarios
in the form of an event log, the functional architecture of the system. We thereby
focus on three basic questions on the functional architecture:

1. Which features interact?

2. What is the internal behavior of features?

3. What is the order in which features are executed within a module?

The first question focuses on the discovery of information flows: given an
event log, is it possible to derive which features interact? As features use these
information flows to offer their functionality, with the next question we investi-
gate whether it is possible to derive the internal behavior of features, i.e., how
does a feature use its information flows to complete its functionality? The last
question deals with the high-level view of the functional architecture. To execute
the system’s functionality, the features within a module are called in a certain
order. Can process discovery techniques be used to discover these orders?

The remainder of this paper is structured as follows. To illustrate the ap-
proach, Sec. 2 presents a running example which we will use throughout the
paper. Next, Sec. 3 presents the basic notions used in the paper. Section 4 in-
troduces the functional architecture model in more detail, after which in Sec. 5
we will focus on solving the three question posed in the introduction. Section 6
concludes the paper.
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Fig. 1. Functional architecture model of the running example
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2 Running Example

As an running example, consider the Payment System as introduced in [9]. The
system consists of three modules, Debtor, Payment and Creditor. The payment
module serves as an intermediate between the Debtor and the Creditor. An
example of such a payment module is the european SEPA standard. The payment
module initiates a transaction, which the debtor needs to accept. If the debtor
accepts, the payment is continued, and the creditor is contacted to start the
transaction. If for some reason the creditor rejects the transaction, the debtor
is notified, and the transaction is terminated. Similarly, if the creditor accepts,
the payment is passed to the debtor, and finally, the creditor receives the final
payment information.

Unfortunately, no model exists that specifies the behavior of this system.
Only, the system records the order in which the different features of the modules
have been called in an event log, as shown in Tbl. 1. For readability, each of the
features is abbreviated in this event log.

The Debtor module consists of the following features:

– Receive transaction request (A);

– Reject transaction (B);

– Accept transaction (C);

– Cancel transaction (D);

– Initiate payment (E);

– Send payment details (F);

– Archive transaction request (G).

Similarly, the Payment module consists of the following features:

– Send transaction request (H);

– Reject transaction request (I);

– Initiate creditor (J);

– Cancel transaction (K);

– Initiate payment (O);

– Handle payment (M);

– Archive transaction (N).

And the Creditor module consists of two features:

– Start transaction (Q);

– Handle transaction (S).

Based on this information, the architect can draw the modules with their
features, as shown in Fig. 1. In the remainder of this paper, we investigate a
method to use event logs, such as the one shown in Tbl. 1, to complete the
diagram and derive a behavioral specification of the system.
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Case Trace

1 H, A, B, G, I, N
2 H, A, B, I, G, N
3 H, A, B, I, N, G
4 H, A, C, J, Q, S, K, D, G, N
5 H, A, C, J, Q, S, K, D, N, G
6 H, A, C, J, Q, S, K, N, D, G
7 H, A, C, J, Q, S, O, E, F, G, M, S, N
8 H, A, C, J, Q, S, O, E, F, G, M, N, S
9 H, A, C, J, Q, S, O, E, F, M, G, S, N
10 H, A, C, J, Q, S, O, E, F, M, G, N, S
11 H, A, C, J, Q, S, O, E, F, M, S, G, N
12 H, A, C, J, Q, S, O, E, F, M, S, N, G
13 H, A, C, J, Q, S, O, E, F, M, N, G, S
14 H, A, C, J, Q, S, O, E, F, M, N, S, G

Table 1. System execution data of the payment system

3 preliminaries

Let S be a set. The powerset of S is denoted by PpSq “ tS1 | S1 Ď Su. We use |S|
for the number of elements in S. Two sets U and V are disjoint if U X V “ H.
Some set S with relation ď is a partial order, denoted by pS,ďq, iff ď is reflexive,
i.e. a ď a for all a P S, antisymmetric, i.e. a ď b and b ď a imply a “ b for all
a, b P S, and transitive, i.e. a ď b and b ď c imply a ď c for all a, b, c P S. Given
a relation R Ď SˆS for some set S, we denote its transitive closure by R`, and
the transitive and reflexive closure by R˚.

A bag m over S is a function m : S Ñ IN , where IN “ t0, 1, . . .u denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m “ ra, b3, c2s. The set
of all bags over S is denoted by INS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use ` and ´ for the sum and difference of
two bags, and “, ă, ą, ď, ě for the comparison of two bags, which are defined
in a standard way.

A sequence over S of length n P IN is a function σ : t1, . . . , nu Ñ S. If
n ą 0 and σpiq “ ai for i P t1, . . . , nu, we write σ “ xa1, . . . , any. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S˚. We write a P σ if a 1 ď i ď |σ| exists such that σpiq “ a. Concatenation
of two sequences ν, γ P S˚, denoted by σ “ ν; γ, is a sequence defined by σ :
t1, . . . , |ν|` |γ|u Ñ S, such that σpiq “ νpiq for 1 ď i ď |ν|, and σpiq “ γpi´|ν|q
for |ν| ` 1 ď i ď |ν| ` |γ|. A sequence σ can be projected over some set U ,
denoted by σ|U , and is inductively defined by ε|U “ ε, pxay;σq|U “ xay;σ|U if

a P U , and pxay;σq|U “ σ|U otherwise.
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Petri Nets A Petri net [13] is a tuple N “ xP, T, F y where (1) P and T are two
disjoint sets of places and transitions respectively; and (2) F Ď pPˆT qYpTˆP q
is a flow relation. The elements from the set P Y T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions as
squares. For each element pn1, n2q P F , an arc is drawn from n1 to n2.

Let N “ xP, T, F y be a Petri net. Given a node n P pP Y T q, we define
its preset ‚

N n “ tn1 | pn1, nq P F u, and its postset n‚N “ tn1 | pn, n1q P F u.
We lift the notation of preset and postset to sets. Given a set U Ď pP Y T q,
‚

N U “
Ť

nPU
‚

N n and U‚N “
Ť

nPU n
‚
N . If the context is clear, we omit the N in

the subscript.
A marking of N is a bag m P INP , where mppq denotes the number of tokens

in place p P P . If mppq ą 0, place p is called marked in marking m. A Petri net
N with corresponding marking m is written as pN,mq and is called a marked
Petri net. Given a marked Petri net pN,mq, transition t is enabled, denoted by
pN,mqrty, if ‚t ď m. If transition t is enabled in pN,mq, it can fire, resulting in
a new marking m1, denoted by pN,mqrtypN,m1q, such that m1` ‚t “ m` t‚. We
lift the firing of transitions to the firing of sequences in a standard way, i.e., a
sequence σ P T˚ of length n is enabled in pN,mq if markings m0, . . . ,mn exist,
such that m “ m0 and pN,mi´1qrσpiqypN,miq for all 1 ď i ď n. A marking
m1 is reachable from some marking m in N , denoted by pN,mqr˚ypN,m1q, if a
firing sequence σ P T˚ exists such that pN,mqrσypN,m1q. A marking m1 is a
home marking of pN,mq, if for all markings m2 with pN,mqr˚ypN,m2q, we have
pN,m2qr˚ypN,m1q.

A special class of Petri nets are the workflow nets [2]. A workflow net is a
tuple xP, T, F, i, fy with xP, T, F y a Petri net, (2) i P P is the only place with no
incoming transitions, (3) f P P is the only place with no outgoing transitions,
i.e., ‚i “ f‚ “ H, and (4) all transitions have at least one incoming and one
outgoing arc, i.e., ‚t ‰ H ‰ t‚ for all t P T .

Open Petri Nets Within a network of asynchronously communicating systems,
messages are passed between the elements within the network. The approach we
follow is based on Open Petri nets [5]. Communication in an open Petri net
(OPN) is represented by special places, called the interface places. An interface
place is either an input place, receiving messages from the outside, or an output
place that sends messages to the outside of the OPN. An input place is a place
that has only outgoing arcs, and an output place has no incoming arcs.

Definition 1. An Open Petri net is defined as an 7-tuple xP, I,O, T, F, i, fy
where (1) xP Y I YO, T, F y is a Petri net; (2) P is a set of internal places; (3)
I is a set of input places, and ‚I “ H; (4) O is a set of output places, and
O‚ “ H; (5) P , I and O are pairwise disjoint; (6) i P INP is the initial marking,
and (7) f P INP is the final marking. We call the set I YO the interface places
of the OPN. An OPN is called closed if I “ O “ H.

An important behavioral property for OPNs is termination: an OPN should
always have the possibility to terminate properly. We identify two termination
properties: weak termination and soundness.
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Definition 2. Let xP, I,O, T, F, i, fy be an OPN. It is weakly terminating, if f
is a home marking of the marked Petri net pxP Y I YO, T, F y, iq. It is sound, if
f is a home marking of the marked Petri net pxP, T, F y, iq.

Communication between OPNs is done via the interface places. Two OPNs
can only communicate if the input places of the one are the output places of the
other, and vice versa.

Definition 3. Two OPNs A and B are composable, denoted by A‘ B, if and
only if pIA XOBq Y pOB X IAq “ pPA Y TA Y IA YOAq X pPB Y TB Y IB YOBq.

If A and B are composable, they can be composed into a new OPN, denoted by
A‘B, with A‘B “ xP, I,O, T, F, i, fy where P “ PAYPBYG; I “ pIAYIBqzG;
O “ pOA YOBqzG; T “ TA Y TB; F “ FA Y FB; i “ iA ` iB; and f “ fA ` fB
with G “ pIA XOBq Y pOB X IAq.

Event Logs and Behavioral Profiles Although event logs are defined as a
tuple consisting of a set of case identifiers, events, and an attribute mapping [3],
it is in this paper sufficient to consider an event log, denoted by L, as a set of
sequences over some alphabet T , i.e., L Ď T˚. Given an event log L, we define
the successor relation [16] by a ăL b if a sequence σ P L and 1 ď i ď |σ| exist,
such that σpiq “ a and σpi` 1q “ b. Using the successor relation, we define the
behavioral profile pÑc, ‖c,`cqL as three relations: (1) the causality relation Ñc

is defined by aÑc b iff aăL b and b ăL a, (2) the concurrency relation ‖c, which
is defined by a ‖c b iff both aăL b and băL a, and (3) the exclusive relation `c

is defined by a `c b iff both a ăL b and b ăL a [16]. If the context is clear, we
omit the subscript.

Given a marked Petri net pN,mq with N “ xP, T, F y, an event log L Ď T˚

is called complete with respect to pN,mq iff traces σ1, σ2 P T
˚ exist such that

pN,mqrσ1; xa, by;σ2ypN,) implies a ăL b for all a, b P T .

4 Functional Architectures

To model the overview of a system, the modules it consists of, and the features
these modules offer, we propose the use of the functional architecture model
(FAM). The functional architecture of a system is “an architectural model which
represents at a high level the software products major functions from a usage
perspective, and specifies the interactions of functions, internally between each
other and externally with other products” [6]. It offers modules containing fea-
tures. Features of different modules interact via so-called information flows.

An example is shown in Fig. 2(a). The FAM contains 1 context module, E,
7 modules, A, B, C, D, X, Y and Z. Modules have features, depicted by the
rounded rectangles. For example, module C contains two features, K and L. Be-
tween features of different modules, information flows exist, e.g., the information
flow pF, q, Lq between modules A and C.
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(b) Scenario as an overlay

Definition 4. A Functional Architecture Model (FAM) is defined as a 6-tuple
xM,F, h,m,Ñy where

– M is a finite set of modules;
– C is a finite set of context modules;
– F is a finite set of features;
– h : M ÑM is the hierarchy function, such that the transitive closure h˚ is

irreflexive;
– m : F Ñ M Y C is a feature map that maps each feature to a module,

possibly in the context, and this module does not have any children, i.e.
h´1pmpF qq “ H for all F P F;

– Ñ Ď F ˆ Λ ˆ F is the information flow, such that for pA, l, Bq PÑ we
have mpAq ‰ mpBq. The labels for the information flows are unique per
feature, i.e., pA, l, Bq and pA, l, Cq imply B “ C for all labels l P Λ and
pA, l, Bq, pA, l, Cq P Ñ.

Although the information flows define the possible interactions between mod-
ules, it remains a static overview of the system. Therefore, one can use scenarios
on top of the functional architecture, e.g. by creating an overlay, highlighting the
information flows that are executed and the order in which they should occur.
Formally, we represent a scenario as a partial order.

Definition 5. Let F “ xM,F, h,m,Ñy be a FAM. A scenario of F is a pair
pS,ăq with S ĎÑ, such that pS,ďq with ď“ă˚ is a partial order.

An example is shown in Fig. 2(b). The scenario implied by the overlay can
be represented by a partial order induced by pO, p, F q ă pF, q, Lq, pF, q, Lq ă
pK, s,Hq, pF, q, Lq ă pK, r,Nq, pK, r,Nq ă pN, u,Hq, pK, s,Hq ă pH, t,Gq,
pN, u,Hq ă pH, t,Gq, pK, r,Nq ă pM, v,Hq, and pM, v,Hq ă pH, t,Gq.

However, such scenarios are typically not specified. Another important draw-
back of such scenarios is their analyzability. Although each scenario can be
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checked, the consistency between the different scenarios remains a difficult task.
Therefore, in the remainder of this paper, we search for a method to derive the
behavioral specification as a network of asynchronously communicating systems,
given the system execution data produced by the actual system in the form of
event logs.

5 Discovery of a Functional Architecture

In this section, we study the possibilities process mining [3] offers to generate
Petri nets for each of the different modules a system consists of. Event logs
describe the order in which features of a system have been executed. Such event
logs are system wide. Instead of each module having its own event log, only
global sequences exist, i.e., sequences concatenate the executed features over all
modules. We assume that each feature belongs to exactly one module, and that
the direction of communication between two features is in one direction, i.e.,
given two features A and B, we assume that either A sends a message to B, or
vice versa, that B sends a message to A, but not both.

The behavioral specification of a system is three-fold: (1) communication
between modules via their features, (2) the internal behavior within each feature,
and (3) the order in which features are called within a module. In this section,
we explore all three types of behavioral specification to come to a composed
system of asynchronously communicating systems.

In the remainder, let L be an event log over a set of features T , and let
R : T Ñ M , with M the set of modules, be a function that maps each feature
onto the module that contains that feature.

5.1 Communication between Features

Communication between modules within a system is asynchronous of nature:
messages are sent between features in order to complete their functionality.
Within an event log, we need to consider the order in which events or fea-
tures occur. For example, given some trace σ, if the resource is different for two
subsequent events, i.e., Rpσpiqq ‰ Rpσpi` 1qq, then this might indicate that the
former sends a message to the latter. This is expressed by the communication
successor.

Definition 6 (Communication successor). Let L Ď T˚ be an event log.
We define the communication successor relation ÎL Ď T ˆ T by AÎLB iff
RpAq ‰ RpBq, σpiq “ A, and σpi` 1q “ B for some σ P L and 1 ď i ă |σ|.

Although at first sight the communication successors seem to work, we need
to remember the concurrent nature of asynchronous communication. Consider
for example the communication between modules M and N as depicted in Fig. 2.
We have AÎE, which is indeed the communication as modeled in the composi-
tion M ‘N . However, we also find GÎB, indicating a possible communication
between G and B. Listing all communication successors, we get AÎE, GÎB,
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Case Trace

1 A, E, F, G, B, C
2 A, E, F, B, G, C
3 A, E, B, F, G, C
4 A, E, B, F, C, G
5 A, E, F, B, C, G
6 A, B, E, F, G, C
7 A, B, E, F, C, G

Table 2. Corresponding event log

E F G

A Ñ ` `

B ‖ ‖ ‖
C ` Ð ‖

Table 3. Communication behavioral profile

F ÎB, BÎG, GÎC, EÎB, BÎF , F ÎC, C ÎG, and BÎE. Observe that
because of the asynchronous nature of the communication, features B and E are
concurrently enabled in Fig. 2. If the event log is complete, as is the case in this
example, this should become visible in the communication successor relation, as
for the normal successor relation on event logs. Thus, calculating the behavioral
profile of the communicating transitions using the communication successor re-
lation, we obtain the relations as shown in Tbl. 3. Indeed, the behavioral profile
shows that B and E are concurrently enabled. Following the behavioral profile,
we see that the causal relation of the behavioral profile correctly identifies the
feature communication.

Using the communication behavioral profile, we can construct the informa-
tion flows from an event log as follows. If AÑB in the communication behavioral
profile of the event log, then an information flow pA, x,Bq exists, with x a fresh
label. This results in the following translation:

Definition 7 (Generated FAM). Let L be an event log, and tÑc, ‖c,`cu be
its communication behavioral profile. Its corresponding functional architecture
model xM,F, h,m,Ñy is defined by:

– M “ RpLq;
– C “ H;
– F “ T ;
– h “ H;
– m “ R; and
– Ñ“ tpA, x,Bq | AÑcB, and x P Λ a fresh labelu.
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Debtor Payment Creditor
A B C D E F G H I J K O M N Q S

A Ð ` ` ` ` ` ` ` `

B ` Ñ ` ` ` ` ` ` `

C ` ` Ñ ` ` ` ` ` `

D ` ` ` Ð ` ` ‖ ` `

E ` ` ` ` Ð ` ` ` `

F ` ` ` ` ` Ñ ` ` `

G ` ‖ ` ` ` ‖ ‖ ` ‖
H Ñ ` ` ` ` ` ` ` `

I ` Ð ` ` ` ` ‖ ` `

J ` ` Ð ` ` ` ` Ñ `

K ` ` ` Ñ ` ` ` ` Ð

O ` ` ` ` Ñ ` ` ` Ð

M ` ` ` ` ` Ð ‖ ` Ñ

N ` ` ` ‖ ` ` ‖ ` ‖
Q ` ` ` ` ` ` ` ` ` Ð ` ` ` `

S ` ` ` ` ` ` ‖ ` ` ` Ñ Ñ Ð ‖

Table 4. Communication behavioral profile for the running example

After constructing the communication behavioral profile for the running ex-
ample, shown in Tbl. 4, we can complete the functional architecture model.
Based on the given system execution data, we see for example that feature H
communicates with feature A, and feature S sends messages to features K and
O, and receives messages from feature M . The complete functional architecture
of the running example is shown in Fig. 3.

5.2 Internal Behavior of Features

As can be seen in the running example, features can send and receive multiple
messages. For example, feature S sometimes sends a message to feature K and
sometimes to feature O. Therefore, the next step in discovering the functional
architecture is to reconstruct the internal behavior of each of the features. For
this, we create for each of the features an event log, containing the features that
it communicates with. We call this the corresponding feature log.

Definition 8 (Feature log). Let L Ď T˚ be an event log, and let F P T be
some feature. Let pÑc, ‖c,`cq be the corresponding communication behavioral
profile. The feature log LF is defined by LF “ tσ|CpF q | σ P L, F P σu where
CpF q “ tA | AÑc F _AÑc F u.

Consider for example feature F in the running example. This feature com-
municates with features K, O and M , i.e., CpF q “ tK,O,Mu. Its feature log is
the projection of the log on these features, i.e., LF “ txKy, xO,Myu.

On these feature logs, we apply the genetic tree miner, that always returns
a sound workflow net (cf. [7, 10]). Next, we transform the discovered workflow
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Fig. 3. Functional architecture model of the running example

net into an open Petri net, to visualize the messages sent and received by the
feature. This results in a feature net for each of the features present in the event
log.

Definition 9 (Feature Net). Let L Ď T˚ be an event log, and let F P T
be some feature. Let pÑc, ‖c,`cq be the corresponding communication behavioral
profile. The Feature net NF is the OPN xP, I,O, T, F, i, fy defined by

– P “ P̄ , T “ T̄ , i “ r̄is, f “ rf̄ s;
– I “ tpA´F | AÑc F u;
– O “ tpF´A | F ÑcAu;
– F “ F̄ Ytpt, pF´Aq | t P T, λptq “ A,F ÑcAu

YtppA´F , tq | t P T, λptq “ A,AÑc F qu.

where xP̄ , T̄ , F̄ , ī, f̄y is the discovered workflow net.

In our running example, each of the 16 features are transformed into a feature
net. Most of the features are simple, like for feature H and A, consisting of
a single transition sending a message to A, and receiving a message from H,
respectively. A more complex feature net is the net for feature S, which internally
decides whether it sends a message to K or to O. Figure 4 depicts some of the
feature nets generated using the genetic tree miner.

5.3 Feature Interaction Within Modules

Now that each feature has its internal behavior defined by means of a feature
net, the next step is to determine the order in which features are executed within
each of the modules. As for the features, we first create event logs for each of
the modules, by filtering each trace on the features it contains. This results in a
module log for each of the modules.
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Definition 10 (Module Log). Let L Ď T˚ be an event log. Let M P RngpRq
be a module. Let pÑc, ‖c,`cq be the corresponding communication behavioral
profile. The Module log LM is defined by LM “ tσ|tF |RpF q“Mu | σ P Lu.

Within the running example, we obtain three module logs, one for each of
the modules. For example, module Debtor, has module log LDebtor “ txA,B,Gy,
xA,C,D,Gy, xA,C,E, F,Gyu, and for Creditor we have LCreditor “ txQy, xQ,S, Syu.
Applying the inductive miner [10] results in the three workflow nets as depicted
in Fig. 7. Notice that, although feature S occurs twice in one of the sequences,
the algorithm only adds a single feature S in the resulting workflow model.

5.4 Composition of Feature Nets and Module Nets

Last step in the process is to combine the feature nets generated for each of the
features with the generated module nets. This results in an open Petri net for
each of the modules, defining the interaction between the different modules.

In the module net, each feature is represented by a single transition. Next
step is to refine each feature by its feature net. For this, we first define the
refinement of a transition by a workflow model on open Petri nets, as shown in
Fig. 5. This refinement connect each input place of the refined transition with
each of the transitions in the postset of the initial place of the workflow, and

Fig. 5. Refinement of a transition by a workflow net
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Fig. 6. Module nets generated for the running example

similarly each output place of the refined transition with each of the transitions
in the preset of the final place of the refining workflow. It is straight-forward
to prove that if (1) the initial net is sound, (2) each input place of the refined
transition is 1-bounded, i.e., it can contain at most one token, and (3) workflow
net W is sound, then the refinement yields a sound result.

The result of refining each feature by its feature net is shown in Fig. 7. As
features G and N have no feature net defining communication, these transitions
are not refined.

To verify whether the resulting open Petri nets are a true representation of
the system, one can compose the nets into a single Petri net, and execute each
of the sequences of the event log of Tbl. 1 on the resulting model, which in this
example is possible. Further analyzing the resulting model shows that it is even
a sound model: the final marking, i.e., the marking with only a token in the final
places of the modules, is a home marking.

6 conclusions

Within this paper, we discussed a method to automatically generate a functional
architecture model from an event log together with a mapping of each feature to
the module that offers that functionality. We showed how the information flows
can be derived from the communication behavioral profile. This profile not only
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identifies the information flow for the static structure of the functional archi-
tecture, but additionally offers sufficient information to construct the internal
behavior for each of the features, and between the features within a module.
Lastly, we showed how to compose feature and module nets into an open Petri
net.

Discovering the interaction between different modules is not new. For exam-
ple in service mining [1], where process mining techniques are used to derive
the interaction between services. However, these techniques focus on creating a
model of the interaction, whereas in this paper, we study the specification of the
different modules. In [12], the authors discover the internal behavior of services
based on the interaction between two services, guaranteeing deadlock freedom of
the discovered service. In the setting of this paper, the exact interaction between
modules is unknown, and needs to be discovered first.

Although the approach presented in this paper is promising, additional re-
search is required. First, the current approach requires the event log to be com-
plete, i.e., if the log grows, the successor relation should not change. Further, for
the generation of the internal feature behavior, we assume that if the sending
feature is present in the event log, it enables all possible events, which is possibly
a too strict assumption that deserves further investigation.

The approach in this paper is very flexible, as we derive individual models
for the feature and modules. For this, we apply standard process discovery algo-
rithms returning sound workflow models. However, their composition in general
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does not result in a sound system of asynchronously communicating systems.
Further research is required to study the conditions under which this can be
guaranteed. For this, we want to identify conditions which on the one hand re-
sult in correct models, and on the other hand have a positive effect on model
quality as described by [8].

Not only does this approach provide useful insights for the software architect,
we expect the approach applicable to business process management as well, as
for the discovery of separate business processes, the Business Process Modelling
and Notation offers the swimlane notion. We plan to implement the approach in
the Process Mining toolkit ProM [15] to experiment and apply the approach on
real-life examples.
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